Suppr超能文献

竞争风险和多状态模型。

Competing risks and multistate models.

机构信息

Clinical Trials Unit, University Medical Center Freiburg, Freiburg, Germany.

出版信息

Clin Cancer Res. 2013 Jan 1;19(1):12-21. doi: 10.1158/1078-0432.CCR-12-1619. Epub 2012 Nov 21.

Abstract

Complex clinical endpoints are present in studies in cancer. Especially in studies on hematopoietic stem-cell transplantation (HSCT), various risks exist after HSCT. Patients can experience acute and chronic graft versus host disease (GVHD) or need to undergo immunosuppressive therapy (IST), a relapse can occur, or patients can die after relapse or without former relapse (nonrelapse mortality, NRM). Sometimes, endpoints can be reasonably combined in a composite endpoint, as, for example, relapse and NRM are combined into disease-free survival (DFS). In this case, standard survival techniques, as Kaplan-Meier estimation of the DFS probability, can be applied. Often, interest focuses on endpoints for which competing risks are present, as, for example, GVHD, with death without prior GVHD as competing risk. This results in a competing risks model, a special case of a multistate model. A more complex multistate model is required when the effects of events occurring in the course of the study on further disease process shall be investigated, as, for example, the effect of GVHD on relapse and NRM. Another endpoint of interest is time under IST. As patients usually experience multiple episodes of IST, thus switching back and forth between "IST" and "no IST" during follow-up, the multistate model used for analysis must be adapted for this event structure. The aim of this nontechnical report is to explain use and interpretation of Cox-type regression models suitable for the different situations in a randomized trial on the effects of anti-T-cell globulin as GVHD prophylaxis.

摘要

癌症研究中存在复杂的临床终点。特别是在造血干细胞移植 (HSCT) 的研究中,HSCT 后存在各种风险。患者可能会经历急性和慢性移植物抗宿主病 (GVHD) 或需要接受免疫抑制治疗 (IST),可能会复发,或者在复发或无先前复发后死亡 (非复发死亡率,NRM)。有时,终点可以合理地组合在一个复合终点中,例如,复发和 NRM 组合成无病生存 (DFS)。在这种情况下,可以应用标准的生存技术,例如 DFS 概率的 Kaplan-Meier 估计。通常,人们关注存在竞争风险的终点,例如 GVHD,死亡是 GVHD 之前的竞争风险。这导致竞争风险模型,是多状态模型的特殊情况。当需要研究研究过程中发生的事件对进一步疾病过程的影响时,例如 GVHD 对复发和 NRM 的影响,就需要更复杂的多状态模型。另一个感兴趣的终点是 IST 下的时间。由于患者通常会经历多次 IST,因此在随访期间在“IST”和“无 IST”之间来回切换,因此用于分析的多状态模型必须适应这种事件结构。本非技术性报告的目的是解释在一项关于抗 T 细胞球蛋白作为 GVHD 预防作用的随机试验中,适用于不同情况的 Cox 型回归模型的使用和解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验