Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany.
Curr Top Membr. 2012;70:1-28. doi: 10.1016/B978-0-12-394316-3.00001-6.
Solute carriers (SLC) that transport amino acids are key players in health and diseases in humans. Their prokaryotic relatives are often involved in essential physiological processes in microorganisms, e.g. in homeostasis and acidic/osmotic stress response. High-resolution X-ray structures of the sequence-unrelated amino acid transporters unraveled a striking structural similarity between carriers, which were formerly assigned to different families. The highly conserved fold is characterized by two inverted structural repeats of five transmembrane helices each and indicates common mechanistic transport concepts if not an evolutionary link among a large number of amino acid transporters. Therefore, these transporters are classified now into the structural amino acid-polyamine-organocation superfamily (APCS). The APCS includes among others the mammalian SLC6 transporters and the heterodimeric SLC7/SLC3 transporters. However, it has to be noted that the APCS is not limited entirely to amino acid transporters but contains also transporters for, e.g. amino acid derivatives and sugars. For instance, the betaine-choline-carnitine transporter family of bacterial activity-regulated Na(+)- and H(+)-coupled symporters for glycine betaine and choline is also part of this second largest structural superfamily. The APCS fold provides different possibilities to transport the same amino acid. Arginine can be transported by an H(+)-coupled symport or by antiport mechanism in exchange against agmatine for example. The convergence of the mechanistic concept of transport under comparable physiological conditions allows speculating if structurally unexplored amino acid transporters, e.g. the members of the SLC36 and SLC38 family, belong to the APCS, too. In the kidney, which is an organ that depends critically on the regulated amino acid transport, these different SLC transporters have to work together to account for proper function. Here, we will summarize the basic concepts of Na(+)- and H(+)-coupled amino acid symport and amino acid-product antiport in the light of the respective physiological requirements.
溶质载体 (SLC) 是在人类健康和疾病中起关键作用的物质,它们可以转运氨基酸。其原核亲属通常参与微生物中的基本生理过程,例如在体内平衡和酸性/渗透胁迫反应中。具有序列非相关性的氨基酸转运蛋白的高分辨率 X 射线结构揭示了这些载体之间惊人的结构相似性,这些载体以前被分配到不同的家族中。高度保守的折叠结构由两个反向的五跨膜螺旋结构重复组成,这表明了在大量氨基酸转运蛋白中存在共同的机械运输概念,如果不是进化联系的话。因此,这些转运蛋白现在被分类为结构氨基酸-多胺-有机阳离子超家族 (APCS)。APCS 包括哺乳动物 SLC6 转运蛋白和异二聚体 SLC7/SLC3 转运蛋白等。然而,需要注意的是,APCS 并不完全局限于氨基酸转运蛋白,还包括氨基酸衍生物和糖的转运蛋白。例如,细菌活性调节的 Na(+)-和 H(+)-偶联协同转运体家族,用于甘氨酸甜菜碱和胆碱的甜菜碱-胆碱-肉碱转运体,也是这个第二大结构超家族的一部分。APCS 折叠结构提供了转运相同氨基酸的不同可能性。例如,精氨酸可以通过 H(+)-偶联协同转运或通过反转运机制来转运,在这种机制中,精氨酸可以与胍丁胺进行交换。在类似的生理条件下,运输机制的收敛性允许推测,如果结构上未被探索的氨基酸转运蛋白,例如 SLC36 和 SLC38 家族的成员,也属于 APCS。在肾脏中,它是一个依赖于调节氨基酸转运的器官,这些不同的 SLC 转运蛋白必须协同工作,以保证正常的功能。在这里,我们将根据各自的生理需求,总结 Na(+)-和 H(+)-偶联氨基酸协同转运和氨基酸-产物反向转运的基本概念。