Wang Chenguang, Li Hongying, Wang Zhong, Wang Yaqun, Wang Ningtao, Wang Zuoheng, Wu Rongling
Beijing Forestry University and Johns Hopkins University - Sidney Kimmel Comprehensive Cancer Center.
Stat Appl Genet Mol Biol. 2012 Nov 22;11(6):Article 2. doi: 10.1515/1544-6115.1675.
Despite their importance in biology and biomedicine, genetic mapping of binary traits that change over time has not been well explored. In this article, we develop a statistical model for mapping quantitative trait loci (QTLs) that govern longitudinal responses of binary traits. The model is constructed within the maximum likelihood framework by which the association between binary responses is modeled in terms of conditional log odds-ratios. With this parameterization, the maximum likelihood estimates (MLEs) of marginal mean parameters are robust to the misspecification of time dependence. We implement an iterative procedures to obtain the MLEs of QTL genotype-specific parameters that define longitudinal binary responses. The usefulness of the model was validated by analyzing a real example in rice. Simulation studies were performed to investigate the statistical properties of the model, showing that the model has power to identify and map specific QTLs responsible for the temporal pattern of binary traits.
尽管二元性状在生物学和生物医学中具有重要意义,但随时间变化的二元性状的基因定位尚未得到充分研究。在本文中,我们开发了一种统计模型,用于定位控制二元性状纵向反应的数量性状基因座(QTL)。该模型是在最大似然框架内构建的,通过条件对数优势比来对二元反应之间的关联进行建模。通过这种参数化,边际均值参数的最大似然估计(MLE)对时间依赖性的错误设定具有鲁棒性。我们实施了一种迭代程序来获得定义纵向二元反应的QTL基因型特异性参数的MLE。通过分析水稻中的一个实际例子验证了该模型的实用性。进行了模拟研究以调查该模型的统计特性,结果表明该模型有能力识别和定位负责二元性状时间模式的特定QTL。