Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico.
Neuroscience. 2013 Feb 12;231:91-101. doi: 10.1016/j.neuroscience.2012.11.031. Epub 2012 Nov 29.
Quinolinic acid (QA)-induced overactivation of N-methyl-d-aspartate receptors yields excitotoxicity, oxidative stress and mitochondrial dysfunction, which altogether contribute to trigger a wide variety of toxic pathways with biochemical, behavioral and neuropathological alterations similar to those observed in Huntington's disease. Noteworthy, in the brains of these patients, increased expression of heme oxygenase-1 (HO-1) levels can be found. It has been proposed that this enzyme can exert a dual role, as it can be either protective or deleterious to the CNS. While some evidence indicates that its overexpression affords cellular anti-oxidant protection due to decreased concentrations of its pro-oxidative substrate heme group, and increased bilirubin levels, other reports established that high HO-1 expression and activity may result in a pro-oxidizing atmosphere due to a release of Fe(2+). In this work, we examined the temporal evolution of oxidative damage to proteins, HO-1 expression, immunoreactivity, total activity, and cell death after 1, 3, 5 and 7 days of an intrastriatal QA infusion (240 nmol/μl). QA was found to induce cellular degeneration, increasing carbonylated proteins and generating a transitory response in HO-1 mRNA, protein content, and immunoreactivity and activity in nerve cells. In order to study the role of HO-1 in the QA-induced cellular death, the tin protoporphyrin IX (SnPP), a well-known HO inhibitor, was administered to rats (30 μmol/kg, i.p.). The administration of SnPP to animals treated with QA inhibited the HO activation, and exacerbated the striatal cell damage induced by QA. Our findings reveal a potential modulatory role of HO-1 in the toxic paradigm evoked by QA in rats. This evidence provides a valuable tool for further approaches on HO-1 regulation in neurotoxic paradigms.
喹啉酸(QA)诱导的 N-甲基-D-天冬氨酸受体过度激活导致兴奋性毒性、氧化应激和线粒体功能障碍,这些共同导致触发广泛的毒性途径,具有生化、行为和神经病理学改变,类似于亨廷顿病中观察到的改变。值得注意的是,在这些患者的大脑中,可以发现血红素加氧酶-1(HO-1)水平的表达增加。有人提出,这种酶可以发挥双重作用,因为它既可以对中枢神经系统起到保护作用,也可以起到有害作用。虽然有一些证据表明,由于其前氧化底物血红素基团的浓度降低和胆红素水平升高,其过表达为细胞提供抗氧化保护,但其他报道表明,高 HO-1 表达和活性可能由于 Fe(2+)的释放而导致氧化气氛。在这项工作中,我们检查了 1、3、5 和 7 天纹状体 QA 输注(240 nmol/μl)后蛋白质氧化损伤、HO-1 表达、免疫反应性、总活性和细胞死亡的时间演变。QA 被发现诱导细胞变性,增加羰基化蛋白质,并在神经细胞中产生 HO-1 mRNA、蛋白质含量和免疫反应性和活性的短暂反应。为了研究 HO-1 在 QA 诱导的细胞死亡中的作用,向大鼠给予锡原卟啉 IX(SnPP),一种众所周知的 HO 抑制剂(30 μmol/kg,ip)。SnPP 向接受 QA 治疗的动物给药抑制了 HO 的激活,并加剧了 QA 诱导的纹状体细胞损伤。我们的研究结果揭示了 HO-1 在 QA 诱导的大鼠毒性模型中的潜在调节作用。这一证据为进一步研究 HO-1 在神经毒性模型中的调节作用提供了有价值的工具。