Suppr超能文献

丙酮诱导的水-空气界面氧化石墨烯薄膜的形成。

Acetone-induced graphene oxide film formation at the water-air interface.

机构信息

School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.

出版信息

Chem Asian J. 2013 Feb;8(2):437-43. doi: 10.1002/asia.201200921. Epub 2012 Nov 30.

Abstract

Graphene oxide (GO) is an amphiphilic soft material, which can accumulate at the water-air interface. However, GO sheets diffuse slowly in the aqueous phase because of their large size. It is still challenging to form high quality GO films in a controllable and simple way. In this study, we showed that GO sheets can quickly migrate to the water-air interface and form thin films when a suitable amount of acetone is directly mixed with a GO aqueous dispersion. The film formation rate and surface coverage of GO sheets depend on the volume of acetone added, GO dispersion concentration, and formation time. Among several organic solvents, acetone has its advantage for GO film formation owing to its three properties: a nonsolvent to GO aqueous dispersions, miscible with a GO aqueous dispersion, and fast evaporation. Furthermore, we have found that the film formation also is governed by the size of GO sheets and their oxygen content. Although smaller GO sheets could migrate to the water-air interface faster, the overlapping of small GO sheets and the increase in contact resistance is not desirable. A higher oxygen content in GO sheets could also result in smaller GO sheets. Multilayer GO films can be obtained through layer-by-layer dip-coating. These findings open opportunities in developing simple scalable GO film fabrication processes.

摘要

氧化石墨烯(GO)是一种两亲性软材料,可以在水-气界面处聚集。然而,由于其尺寸较大,GO 片在水相中扩散缓慢。仍然难以以可控和简单的方式形成高质量的 GO 薄膜。在这项研究中,我们表明当适量的丙酮直接与 GO 水基分散体混合时,GO 片可以快速迁移到水-气界面并形成薄膜。GO 片的成膜速率和表面覆盖率取决于添加的丙酮体积、GO 分散体浓度和形成时间。在几种有机溶剂中,由于其三种特性,丙酮在 GO 薄膜形成方面具有优势:对 GO 水基分散体是非溶剂,与 GO 水基分散体混溶,且蒸发速度快。此外,我们还发现成膜过程还受 GO 片的大小和氧含量的控制。尽管较小的 GO 片可以更快地迁移到水-气界面,但小 GO 片的重叠和接触电阻的增加并不是理想的。GO 片中较高的氧含量也可能导致较小的 GO 片。通过层层浸涂可以获得多层 GO 薄膜。这些发现为开发简单、可扩展的 GO 薄膜制造工艺提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验