Suppr超能文献

鼠伤寒沙门氏菌高度持久突变株的分离揭示了一个新的毒素-抗毒素模块。

Isolation of highly persistent mutants of Salmonella enterica serovar typhimurium reveals a new toxin-antitoxin module.

机构信息

Department of Veterinary Microbiology, Iowa State University, Ames, IA, USA.

出版信息

J Bacteriol. 2013 Feb;195(4):647-57. doi: 10.1128/JB.01397-12. Epub 2012 Nov 30.

Abstract

Bacterial persistence is characterized by the ability of a subpopulation within bacterial cultures to survive exposure to antibiotics and other lethal treatments. The surviving persisters are not the result of genetic changes but represent epigenetic variants that are in a physiological state where growth is inhibited. Since characterization of persisters has been performed mainly in Escherichia coli K-12, we sought to identify mechanisms of persistence in the pathogen Salmonella enterica serovar Typhimurium. Isolation of new highly persistent mutants revealed that the shpAB locus (Salmonella high persistence) imparted a 3- to 4-order-of-magnitude increase in survival after ampicillin exposure throughout its growth phase and protected the population against exposure to multiple antibiotics. Genetic characterization revealed that shpAB is a newly discovered toxin-antitoxin (TA) module. The high-persistence phenotype was attributed to a nonsense mutation in the 3' end of the shpB gene encoding an antitoxin protein. Characteristic of other TA modules, shpAB is autoregulated, and high persistence depends on the Lon protease.

摘要

细菌持久存在的特征是,细菌培养物中的亚群能够在暴露于抗生素和其他致死处理后存活。存活的持久存在者不是遗传变化的结果,而是代表处于生长受到抑制的生理状态的表观遗传变体。由于持久存在者的特征主要在大肠杆菌 K-12 中进行,我们试图确定病原体沙门氏菌血清型鼠伤寒的持久存在机制。分离新的高度持久突变体表明,shpAB 基因座(沙门氏菌高持久性)赋予了氨苄青霉素暴露整个生长阶段后存活的 3-4 个数量级的增加,并保护了群体免受多种抗生素的暴露。遗传特征表明,shpAB 是一个新发现的毒素-抗毒素(TA)模块。高持久性表型归因于编码抗毒素蛋白的 shpB 基因 3'端的无意义突变。与其他 TA 模块的特征一样,shpAB 是自身调控的,高持久性依赖于 Lon 蛋白酶。

相似文献

1
Isolation of highly persistent mutants of Salmonella enterica serovar typhimurium reveals a new toxin-antitoxin module.
J Bacteriol. 2013 Feb;195(4):647-57. doi: 10.1128/JB.01397-12. Epub 2012 Nov 30.
3
The chromosomal mazEF locus of Streptococcus mutans encodes a functional type II toxin-antitoxin addiction system.
J Bacteriol. 2011 Mar;193(5):1122-30. doi: 10.1128/JB.01114-10. Epub 2010 Dec 23.
4
Structural Determinants for Antitoxin Identity and Insulation of Cross Talk between Homologous Toxin-Antitoxin Systems.
J Bacteriol. 2016 Nov 18;198(24):3287-3295. doi: 10.1128/JB.00529-16. Print 2016 Dec 15.
6
Toxins, Targets, and Triggers: An Overview of Toxin-Antitoxin Biology.
Mol Cell. 2018 Jun 7;70(5):768-784. doi: 10.1016/j.molcel.2018.01.003. Epub 2018 Feb 3.
8
Toxin-antitoxin systems in bacterial growth arrest and persistence.
Nat Chem Biol. 2016 Apr;12(4):208-14. doi: 10.1038/nchembio.2044.
9
The role of RamA on the development of ciprofloxacin resistance in Salmonella enterica serovar Typhimurium.
PLoS One. 2011;6(8):e23471. doi: 10.1371/journal.pone.0023471. Epub 2011 Aug 12.
10
A novel family of Escherichia coli toxin-antitoxin gene pairs.
J Bacteriol. 2003 Nov;185(22):6600-8. doi: 10.1128/JB.185.22.6600-6608.2003.

引用本文的文献

1
Limited impact of Salmonella stress and persisters on antibiotic clearance.
Nature. 2025 Mar;639(8053):181-189. doi: 10.1038/s41586-024-08506-6. Epub 2025 Feb 5.
3
Bacterial Persister Cells and Development of Antibiotic Resistance in Chronic Infections: An Update.
Br J Biomed Sci. 2024 Aug 7;81:12958. doi: 10.3389/bjbs.2024.12958. eCollection 2024.
4
Methionyl-tRNA synthetase synthetic and proofreading activities are determinants of antibiotic persistence.
Front Microbiol. 2024 Mar 27;15:1384552. doi: 10.3389/fmicb.2024.1384552. eCollection 2024.
7
Immune Response Modulation by Pseudomonas aeruginosa Persister Cells.
mBio. 2023 Apr 25;14(2):e0005623. doi: 10.1128/mbio.00056-23. Epub 2023 Mar 15.
8
Immune response modulation by persister cells.
bioRxiv. 2023 Jan 8:2023.01.07.523056. doi: 10.1101/2023.01.07.523056.
9
Antibiotic tolerance and persistence have distinct fitness trade-offs.
PLoS Pathog. 2022 Nov 14;18(11):e1010963. doi: 10.1371/journal.ppat.1010963. eCollection 2022 Nov.
10
Toxin-Antitoxin Systems: A Key Role on Persister Formation in Serovar Typhimurium.
Infect Drug Resist. 2022 Oct 3;15:5813-5829. doi: 10.2147/IDR.S378157. eCollection 2022.

本文引用的文献

1
Bacterial persistence and toxin-antitoxin loci.
Annu Rev Microbiol. 2012;66:103-23. doi: 10.1146/annurev-micro-092611-150159.
2
Additional role for the ccd operon of F-plasmid as a transmissible persistence factor.
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12497-502. doi: 10.1073/pnas.1121217109. Epub 2012 Jul 16.
3
Large mutational target size for rapid emergence of bacterial persistence.
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12740-5. doi: 10.1073/pnas.1205124109. Epub 2012 Jul 16.
4
Regulation of the Escherichia coli HipBA toxin-antitoxin system by proteolysis.
PLoS One. 2012;7(6):e39185. doi: 10.1371/journal.pone.0039185. Epub 2012 Jun 15.
6
Toxin-antitoxin systems in bacteria and archaea.
Annu Rev Genet. 2011;45:61-79. doi: 10.1146/annurev-genet-110410-132412.
7
Regulation of growth and death in Escherichia coli by toxin-antitoxin systems.
Nat Rev Microbiol. 2011 Sep 19;9(11):779-90. doi: 10.1038/nrmicro2651.
8
"Persisters": survival at the cellular level.
PLoS Pathog. 2011 Jul;7(7):e1002121. doi: 10.1371/journal.ppat.1002121. Epub 2011 Jul 28.
9
Toxins-antitoxins: diversity, evolution and function.
Crit Rev Biochem Mol Biol. 2011 Oct;46(5):386-408. doi: 10.3109/10409238.2011.600437. Epub 2011 Aug 5.
10
Bacterial persistence by RNA endonucleases.
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13206-11. doi: 10.1073/pnas.1100186108. Epub 2011 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验