Furukawa Ryo, Yamada Yuma, Harashima Hideyoshi
Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
Yakugaku Zasshi. 2012;132(12):1389-98. doi: 10.1248/yakushi.12-00235-3.
Gene therapy is an attractive strategy, for not only targeting nuclear genome, but the mitochondrial genome as well. Human mitochondrial DNA (mtDNA) encodes 13 subunits of the electron transport chain, 22 tRNAs, and 2 rRNAs and their mutations cause a wide range of mitochondrial diseases. Each cell contains hundreds to thousands of mtDNAs, and in the case of a diseased cell, the mitochondrion possesses both mutant mtDNA and wild-type mtDNA. It is generally accepted that the disease phenotype appears when the proportion of the pathogenic mutant mtDNA exceeds a certain threshold. Therefore, the suppression of mutant mtDNA or supplementing wild-type mtDNA will control the onset of mitochondrial disease. To achieve the transfection of an exogenous therapeutic gene to the mitochondrial matrix where mtDNA is transcribed and translated, it is necessary to transfer cargos through mitochondrial outer and inner membranes. Several methods have been examined for mitochondrial transfection, but a universal, wide-ranging transfection technique has yet not been established. We recently developed a mitochondrial targeting delivery system, namely the MITO-Porter. The MITO-Porter is liposomal nanocarrier with a mitochondrial fusogenic lipid composition. We reported that the MITO-Porter could deliver chemical compounds and proteins to the mitochondrial matrix via membrane fusion. In this review, we report (1) on the pharmacological enhancement of lecithinized superoxide dismutase (PC-SOD) using MITO-Porter, (2) the transcription activation of exogenous DNA by mitochondrial transcription factor A (TFAM), and (3) perspectives on a mitochondrial targeting device.
基因治疗是一种颇具吸引力的策略,因为它不仅可以靶向核基因组,还能靶向线粒体基因组。人类线粒体DNA(mtDNA)编码电子传递链的13个亚基、22种tRNA和2种rRNA,其突变会导致多种线粒体疾病。每个细胞含有数百到数千个mtDNA,在患病细胞中,线粒体同时拥有突变型mtDNA和野生型mtDNA。普遍认为,当致病性突变型mtDNA的比例超过一定阈值时,疾病表型就会出现。因此,抑制突变型mtDNA或补充野生型mtDNA将控制线粒体疾病的发作。为了将外源性治疗基因转染到mtDNA进行转录和翻译的线粒体基质中,有必要通过线粒体外膜和内膜转运物质。已经研究了几种线粒体转染方法,但尚未建立一种通用的、广泛适用的转染技术。我们最近开发了一种线粒体靶向递送系统,即线粒体转运体(MITO-Porter)。线粒体转运体是一种具有线粒体融合脂质成分的脂质体纳米载体。我们报道线粒体转运体可以通过膜融合将化合物和蛋白质递送到线粒体基质中。在这篇综述中,我们报告了:(1)使用线粒体转运体对卵磷脂化超氧化物歧化酶(PC-SOD)进行药理学增强;(2)线粒体转录因子A(TFAM)对外源DNA的转录激活;(3)关于线粒体靶向装置的展望。