Chemistry Department, Brown University, Providence, Rhode Island 02912, United States.
Acc Chem Res. 2013 Feb 19;46(2):350-8. doi: 10.1021/ar300149a. Epub 2012 Dec 5.
Atomic clusters have intermediate properties between that of individual atoms and bulk solids, which provide fertile ground for the discovery of new molecules and novel chemical bonding. In addition, the study of small clusters can help researchers design better nanosystems with specific physical and chemical properties. From recent experimental and computational studies, we know that small boron clusters possess planar structures stabilized by electron delocalization both in the σ and π frameworks. An interesting boron cluster is B(9)(-), which has a D(8h) molecular wheel structure with a single boron atom in the center of a B(8) ring. This ring in the D(8h)-B(9)(-) cluster is connected by eight classical two-center, two-electron bonds. In contrast, the cluster's central boron atom is bonded to the peripheral ring through three delocalized σ and three delocalized π bonds. This bonding structure gives the molecular wheel double aromaticity and high electronic stability. The unprecedented structure and bonding pattern in B(9)(-) and other planar boron clusters have inspired the designs of similar molecular wheel-type structures. But these mimics instead substitute a heteroatom for the central boron. Through recent experiments in cluster beams, chemists have demonstrated that transition metals can be doped into the center of the planar boron clusters. These new metal-centered monocyclic boron rings have variable ring sizes, M©B(n) and M©B(n)(-) with n = 8-10. Using size-selected anion photoelectron spectroscopy and ab initio calculations, researchers have characterized these novel borometallic molecules. Chemists have proposed a design principle based on σ and π double aromaticity for electronically stable borometallic cluster compounds, featuring a highly coordinated transition metal atom centered inside monocyclic boron rings. The central metal atom is coordinatively unsaturated in the direction perpendicular to the molecular plane. Thus, chemists may design appropriate ligands to synthesize the molecular wheels in the bulk. In this Account, we discuss these recent experimental and theoretical advances of this new class of aromatic borometallic compounds, which contain a highly coordinated central transition metal atom inside a monocyclic boron ring. Through these examples, we show that atomic clusters can facilitate the discovery of new structures, new chemical bonding, and possibly new nanostructures with specific, advantageous properties.
原子团簇具有介于单个原子和体相固体之间的中间性质,这为发现新分子和新化学键提供了肥沃的土壤。此外,对小团簇的研究可以帮助研究人员设计具有特定物理和化学性质的更好的纳米系统。从最近的实验和计算研究中,我们知道,小硼团簇具有平面结构,这种结构通过 σ 和 π 框架中的电子离域来稳定。有趣的硼团簇是 B(9)(-),它具有 D(8h)分子轮结构,中心有一个硼原子位于 B(8)环的中心。D(8h)-B(9)(-)团簇中的这个环通过八个经典的二中心、两电子键连接。相比之下,团簇的中心硼原子通过三个离域的 σ 和三个离域的 π 键与外围环键合。这种键合结构使分子轮具有双重芳香性和高电子稳定性。B(9)(-)和其他平面硼团簇中前所未有的结构和键合模式激发了类似分子轮型结构的设计。但这些模拟物用杂原子代替了中心硼原子。通过最近在团簇束中的实验,化学家已经证明过渡金属可以掺杂到平面硼团簇的中心。这些新的金属中心单环硼环具有可变的环大小,M©B(n) 和 M©B(n)(-),其中 n = 8-10。研究人员使用尺寸选择的阴离子光电子能谱和从头算计算对这些新型硼金属分子进行了表征。化学家基于 σ 和 π 双重芳香性提出了一个电子稳定的硼金属团簇化合物的设计原则,其特征是高度配位的过渡金属原子位于单环硼环的中心。中心金属原子在垂直于分子平面的方向上配位不饱和。因此,化学家可以设计合适的配体来在块体中合成分子轮。在本综述中,我们讨论了这一类新型芳香硼金属化合物的最新实验和理论进展,其中包含一个高度配位的中心过渡金属原子位于单环硼环内。通过这些例子,我们表明原子团簇可以促进新结构、新化学键的发现,并可能发现具有特定有利性质的新型纳米结构。