Suppr超能文献

连续空间中行人运动的自然离散化

Natural discretization of pedestrian movement in continuous space.

作者信息

Seitz Michael J, Köster Gerta

机构信息

Department of Computer Science and Mathematics, Munich University of Applied Sciences, 80335 Munich, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 2):046108. doi: 10.1103/PhysRevE.86.046108. Epub 2012 Oct 15.

Abstract

Is there a way to describe pedestrian movement with simple rules, as in a cellular automaton, but without being restricted to a cellular grid? Inspired by the natural stepwise movement of humans, we develop a model that uses local discretization on a circle around virtual pedestrians. This allows for movement in arbitrary directions, only limited by the chosen optimization algorithm and numerical resolution. The radii of the circles correspond to the step lengths of pedestrians and thus are model parameters, which must be derived from empirical observation. Therefore, we conducted a controlled experiment, collected empirical data for step lengths in relation with different speeds, and used the findings in our model. We complement the model with a simple calibration algorithm that allows reproducing known density-velocity relations, which constitutes a proof of concept. Further validation of the model is achieved by reenacting an evacuation scenario from experimental research. The simulated egress times match the values reported for the experiment very well. A new normalized measure for space occupancy serves to visualize the results.

摘要

是否存在一种方法,可以像在元胞自动机中那样用简单规则描述行人运动,但又不受限于元胞网格呢?受人类自然的逐步移动启发,我们开发了一种模型,该模型在虚拟行人周围的圆上使用局部离散化。这允许向任意方向移动,仅受所选优化算法和数值分辨率的限制。圆的半径对应行人的步长,因此是模型参数,必须从经验观察中得出。因此,我们进行了一项对照实验,收集了与不同速度相关的步长的经验数据,并将这些发现应用于我们的模型。我们用一种简单的校准算法对模型进行补充,该算法允许重现已知的密度-速度关系,这构成了一个概念验证。通过重现实验研究中的疏散场景来对模型进行进一步验证。模拟的疏散时间与实验报告的值非常吻合。一种新的空间占用归一化度量用于直观展示结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验