Suppr超能文献

弯曲纳米梁的异构化动力学

Isomerization dynamics of a buckled nanobeam.

作者信息

Collins Peter, Ezra Gregory S, Wiggins Stephen

机构信息

School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056218. doi: 10.1103/PhysRevE.86.056218. Epub 2012 Nov 29.

Abstract

We analyze the dynamics of a model of a nanobeam under compression. The model is a two-mode truncation of the Euler-Bernoulli beam equation subject to compressive stress applied at both ends. We consider parameter regimes where the first mode is unstable and the second mode can be either stable or unstable, and the remaining modes (neglected) are always stable. Material parameters used correspond to a silicon nanobeam. The two-mode model Hamiltonian is the sum of a (diagonal) kinetic energy term and a potential energy term. The form of the potential energy function suggests an analogy with isomerization reactions in chemistry, where "isomerization" here corresponds to a transition between two stable beam configurations. We therefore study the dynamics of the buckled beam using the conceptual framework established for the theory of isomerization reactions. When the second mode is stable the potential energy surface has an index one saddle, and when the second mode is unstable the potential energy surface has an index two saddle and two index one saddles. Symmetry of the system allows us to readily construct a phase space dividing surface between the two "isomers" (buckled states); we rigorously prove that, in a specific energy range, it is a normally hyperbolic invariant manifold. The energy range is sufficiently wide that we can treat the effects of the index one and index two saddles on the isomerization dynamics in a unified fashion. We have computed reactive fluxes, mean gap times, and reactant phase space volumes for three stress values at several different energies. In all cases the phase space volume swept out by isomerizing trajectories is considerably less than the reactant density of states, proving that the dynamics is highly nonergodic. The associated gap time distributions consist of one or more "pulses" of trajectories. Computation of the reactive flux correlation function shows no sign of a plateau region; rather, the flux exhibits oscillatory decay, indicating that, for the two-mode model in the physical regime considered, a rate constant for isomerization does not exist.

摘要

我们分析了受压纳米梁模型的动力学。该模型是欧拉 - 伯努利梁方程的双模态截断,两端施加压缩应力。我们考虑参数区域,其中第一模态不稳定,第二模态可以是稳定的或不稳定的,而其余模态(被忽略)总是稳定的。所使用的材料参数对应于硅纳米梁。双模态模型哈密顿量是一个(对角的)动能项和一个势能项的总和。势能函数的形式表明与化学中的异构化反应有类比关系,这里的“异构化”对应于两个稳定梁构型之间的转变。因此,我们使用为异构化反应理论建立的概念框架来研究屈曲梁的动力学。当第二模态稳定时,势能面有一个指标为一的鞍点,当第二模态不稳定时,势能面有一个指标为二的鞍点和两个指标为一的鞍点。系统的对称性使我们能够轻松构建两个“异构体”(屈曲状态)之间的相空间分隔面;我们严格证明,在特定能量范围内,它是一个正常双曲不变流形。能量范围足够宽,以至于我们可以以统一的方式处理指标为一和指标为二的鞍点对异构化动力学的影响。我们已经计算了几种不同能量下三个应力值的反应通量、平均间隙时间和反应物相空间体积。在所有情况下,异构化轨迹扫过的相空间体积远小于态密度的反应物密度,证明动力学是高度非遍历的。相关的间隙时间分布由一个或多个轨迹“脉冲”组成。反应通量相关函数的计算没有显示出平台区域的迹象;相反,通量表现出振荡衰减,表明在所考虑的物理区域中的双模态模型不存在异构化速率常数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验