Department of Applied Physics, Osaka University Yamada-oka 2-1, Suita 585-0871, Osaka, Japan.
Phys Rev Lett. 2012 Nov 21;109(21):215501. doi: 10.1103/PhysRevLett.109.215501.
We investigated the bonding stiffness of individual atoms on substrate surfaces using noncontact atomic force microscopy with frequency modulation. We measured the frequency shift distribution of the (110) plane above buckling-up and buckling-down dimer atoms of the Ge(001)-c(4 × 2) surface using a tungsten-coated atomic force microscopy cantilever. The tip-surface chemical force distribution was reproduced from the frequency shift data using calculations based on Sader's formula. The total harmonic bonding stiffness between the dimer atoms and the substrate was first discovered by fitting the Morse force to the tip-surface chemical force distribution with consideration of the relaxation in the tip-surface gap. By excluding the contribution exerted by the probe tip, we observed that the harmonic bonding compliance of the buckling-up dimer atom was 4.8 × 10(-3) m/N stiffer than that of the buckling-down dimer atom. This technique for probing the elastic bonding states of individual surface atoms at the atomic scale is unique.
我们使用基于调频的非接触原子力显微镜研究了基底表面上单个原子的结合刚度。我们使用涂有钨的原子力显微镜悬臂测量了 Ge(001)-c(4×2)表面上凸起和凹陷二聚体原子上方(110)面的频率位移分布。利用基于 Sader 公式的计算,从频率位移数据中再现了针尖-表面化学力分布。通过将 Morse 力拟合到针尖-表面化学力分布中,并考虑针尖-表面间隙的弛豫,首次发现了二聚体原子与基底之间的总谐波结合刚度。通过排除探针尖端的贡献,我们观察到凸起二聚体原子的谐波结合柔量比凹陷二聚体原子硬 4.8×10(-3) m/N。这种在原子尺度上探测单个表面原子弹性结合状态的技术是独特的。