Suppr超能文献

绿脓菌素铁载体被保护菌 Pf-5 的 Fpv 外膜蛋白识别。

Ferric-pyoverdine recognition by Fpv outer membrane proteins of Pseudomonas protegens Pf-5.

机构信息

Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.

出版信息

J Bacteriol. 2013 Feb;195(4):765-76. doi: 10.1128/JB.01639-12. Epub 2012 Dec 7.

Abstract

The soil bacterium Pseudomonas protegens Pf-5 (previously called P. fluorescens Pf-5) produces two siderophores, enantio-pyochelin and a compound in the large and diverse pyoverdine family. Using high-resolution mass spectroscopy, we determined the structure of the pyoverdine produced by Pf-5. In addition to producing its own siderophores, Pf-5 also utilizes ferric complexes of some pyoverdines produced by other strains of Pseudomonas spp. as sources of iron. Previously, phylogenetic analysis of the 45 TonB-dependent outer membrane proteins in Pf-5 indicated that six are in a well-supported clade with ferric-pyoverdine receptors (Fpvs) from other Pseudomonas spp. We used a combination of phylogenetics, bioinformatics, mutagenesis, pyoverdine structural determinations, and cross-feeding bioassays to assign specific ferric-pyoverdine substrates to each of the six Fpvs of Pf-5. We identified at least one ferric-pyoverdine that was taken up by each of the six Fpvs of Pf-5. Functional redundancy of the Pf-5 Fpvs was also apparent, with some ferric-pyoverdines taken up by all mutants with a single Fpv deletion but not by a mutant having deletions in two of the Fpv-encoding genes. Finally, we demonstrated that phylogenetically related Fpvs take up ferric complexes of structurally related pyoverdines, thereby establishing structure-function relationships that can be employed in the future to predict the pyoverdine substrates of Fpvs in other Pseudomonas spp.

摘要

土壤细菌荧光假单胞菌 Pf-5(以前称为荧光假单胞菌 Pf-5)产生两种铁载体,对映体-吡咯并并啉和一种在大型多样的吡咯并家族中的化合物。使用高分辨率质谱,我们确定了 Pf-5 产生的吡咯并的结构。除了产生自己的铁载体外,Pf-5 还利用其他假单胞菌菌株产生的铁复合物作为铁源。先前,对 Pf-5 中 45 个 TonB 依赖性外膜蛋白的系统发育分析表明,其中 6 个与其他假单胞菌的铁-吡咯并受体(Fpvs)在一个支持良好的分支中。我们使用系统发育学、生物信息学、诱变、吡咯并结构测定和交叉喂养生物测定的组合,将特定的铁-吡咯并底物分配给 Pf-5 的六个 Fpvs 中的每一个。我们确定了至少一种被 Pf-5 的六个 Fpvs 中的每一个吸收的铁-吡咯并。Pf-5 Fpvs 的功能冗余也很明显,一些铁-吡咯并被所有缺失单个 Fpv 的突变体吸收,但不能被缺失两个 Fpv 编码基因的突变体吸收。最后,我们证明了系统发育上相关的 Fpvs 吸收结构相关的吡咯并的铁复合物,从而建立了可以在未来用于预测其他假单胞菌 Fpvs 的吡咯并底物的结构-功能关系。

相似文献

1
Ferric-pyoverdine recognition by Fpv outer membrane proteins of Pseudomonas protegens Pf-5.
J Bacteriol. 2013 Feb;195(4):765-76. doi: 10.1128/JB.01639-12. Epub 2012 Dec 7.
2
TonB-dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5.
Biometals. 2011 Apr;24(2):193-213. doi: 10.1007/s10534-010-9385-2. Epub 2010 Nov 16.
5
Chemistry and biology of pyoverdines, Pseudomonas primary siderophores.
Curr Med Chem. 2015;22(2):165-86. doi: 10.2174/0929867321666141011194624.
6
The fitness benefit of pyoverdine cross-feeding by Pseudomonas protegens Pf-5.
Environ Microbiol. 2024 Jan;26(1):e16554. doi: 10.1111/1462-2920.16554. Epub 2023 Dec 14.
7
Pyoverdine and histicorrugatin-mediated iron acquisition in Pseudomonas thivervalensis.
Biometals. 2016 Jun;29(3):467-85. doi: 10.1007/s10534-016-9929-1. Epub 2016 Mar 23.
8
FpvA bound to non-cognate pyoverdines: molecular basis of siderophore recognition by an iron transporter.
Mol Microbiol. 2009 Jun;72(5):1246-59. doi: 10.1111/j.1365-2958.2009.06721.x.
9
FpvA receptor involvement in pyoverdine biosynthesis in Pseudomonas aeruginosa.
J Bacteriol. 2002 Jun;184(12):3268-75. doi: 10.1128/JB.184.12.3268-3275.2002.

引用本文的文献

2
Pyoverdine binding aptamers and label-free electrochemical detection of pseudomonads.
Front Chem. 2024 Aug 1;12:1438710. doi: 10.3389/fchem.2024.1438710. eCollection 2024.
3
The genome of a steinernematid-associated bacterium encodes the biosynthesis of insect toxins.
Access Microbiol. 2023 Oct 5;5(10). doi: 10.1099/acmi.0.000659.v3. eCollection 2023.
4
Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing.
Front Cell Infect Microbiol. 2023 Jun 29;13:1159798. doi: 10.3389/fcimb.2023.1159798. eCollection 2023.
6
Cefiderocol: An Overview of Its and Activity and Underlying Resistant Mechanisms.
Front Med (Lausanne). 2021 Dec 7;8:741940. doi: 10.3389/fmed.2021.741940. eCollection 2021.
7
Metabolic Interactions between and Pseudomonas fluorescens under Controlled Iron-Limited Conditions.
mSystems. 2021 Jan 5;6(1):e00580-20. doi: 10.1128/mSystems.00580-20.
8
Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil species.
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32358-32369. doi: 10.1073/pnas.2016380117. Epub 2020 Dec 3.
9
Impact of Bacterial Siderophores on Iron Status and Ionome in Pea.
Front Plant Sci. 2020 Jun 12;11:730. doi: 10.3389/fpls.2020.00730. eCollection 2020.
10
The biosynthesis of pyoverdines.
Microb Cell. 2018 Aug 28;5(10):424-437. doi: 10.15698/mic2018.10.649.

本文引用的文献

4
TonB or not TonB: is that the question?
Biochem Cell Biol. 2011 Apr;89(2):87-97. doi: 10.1139/o10-141.
7
TonB-dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5.
Biometals. 2011 Apr;24(2):193-213. doi: 10.1007/s10534-010-9385-2. Epub 2010 Nov 16.
8
Chemistry and biology of siderophores.
Nat Prod Rep. 2010 May;27(5):637-57. doi: 10.1039/b906679a.
9
Iron uptake and metabolism in pseudomonads.
Appl Microbiol Biotechnol. 2010 May;86(6):1637-45. doi: 10.1007/s00253-010-2550-2. Epub 2010 Mar 30.
10
Stereospecific recognition of pyochelin and enantio-pyochelin by the PchR proteins in fluorescent pseudomonads.
Microbiology (Reading). 2010 Jun;156(Pt 6):1772-1782. doi: 10.1099/mic.0.037796-0. Epub 2010 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验