Suppr超能文献

表征蛋白质环境对金属蛋白还原电位的影响。

Characterizing the effects of the protein environment on the reduction potentials of metalloproteins.

机构信息

Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227, USA.

出版信息

J Biol Inorg Chem. 2013 Jan;18(1):103-10. doi: 10.1007/s00775-012-0955-3. Epub 2012 Nov 15.

Abstract

The reduction potentials of electron transfer proteins are critically determined by the degree of burial of the redox site within the protein and the degree of permanent polarization of the polypeptide around the redox site. Although continuum electrostatics calculations of protein structures can predict the net effect of these factors, quantifying each individual contribution is a difficult task. Here, the burial of the redox site is characterized by a dielectric radius R(p) (a Born-type radius for the protein), the polarization of the polypeptide is characterized by an electret potential ϕ(p) (the average electrostatic potential at the metal atoms), and an electret-dielectric spheres (EDS) model of the entire protein is then defined in terms of R(p) and ϕ(p). The EDS model shows that for a protein with a redox site of charge Q, the dielectric response free energy is a function of Q(2), while the electret energy is a function of Q. In addition, R(p) and ϕ(p) are shown to be characteristics of the fold of a protein and are predictive of the most likely redox couple for redox sites that undergo different redox couples.

摘要

电子转移蛋白的还原电位主要由其氧化还原中心在蛋白质中的埋藏程度和氧化还原中心周围多肽的永久极化程度决定。尽管蛋白质结构的连续静电计算可以预测这些因素的综合影响,但量化每个因素的单独贡献是一项艰巨的任务。在这里,氧化还原中心的埋藏程度用介电半径 R(p)(蛋白质的玻恩型半径)来描述,多肽的极化程度用偶极子势 ϕ(p)(金属原子处的平均静电势)来描述,然后根据 R(p)和 ϕ(p)来定义整个蛋白质的偶极子-介电球体(EDS)模型。EDS 模型表明,对于带有电荷 Q 的氧化还原中心的蛋白质,介电响应自由能是 Q(2)的函数,而偶极子能量是 Q 的函数。此外,还表明 R(p)和 ϕ(p)是蛋白质折叠的特征,并且可以预测经历不同氧化还原对的氧化还原中心的最可能的氧化还原对。

相似文献

1
Characterizing the effects of the protein environment on the reduction potentials of metalloproteins.
J Biol Inorg Chem. 2013 Jan;18(1):103-10. doi: 10.1007/s00775-012-0955-3. Epub 2012 Nov 15.
2
What Are We Missing by Not Measuring the Net Charge of Proteins?
Chemistry. 2019 Jun 7;25(32):7581-7590. doi: 10.1002/chem.201900178. Epub 2019 Apr 10.
3
Direct Measurement of Charge Regulation in Metalloprotein Electron Transfer.
Angew Chem Int Ed Engl. 2018 May 4;57(19):5364-5368. doi: 10.1002/anie.201712306. Epub 2018 Mar 25.
4
Fold versus sequence effects on the driving force for protein-mediated electron transfer.
Proteins. 2010 Oct;78(13):2798-808. doi: 10.1002/prot.22794.
5
7
Azurin: A Model to Study a Metal Coordination Sphere or Electron Transfer in Metalloproteins.
Int J Mol Sci. 2025 Apr 26;26(9):4125. doi: 10.3390/ijms26094125.
8
Enthalpy/entropy compensation phenomena in the reduction thermodynamics of electron transport metalloproteins.
J Biol Inorg Chem. 2004 Jan;9(1):23-6. doi: 10.1007/s00775-003-0490-3. Epub 2003 Oct 30.
9
On the role of strain in blue copper proteins.
J Biol Inorg Chem. 2000 Oct;5(5):565-74. doi: 10.1007/s007750000147.

引用本文的文献

1
Development of a Rubredoxin-Type Center Embedded in a de Dovo-Designed Three-Helix Bundle.
Biochemistry. 2018 Apr 24;57(16):2308-2316. doi: 10.1021/acs.biochem.8b00091. Epub 2018 Apr 9.
2
Protein dynamics and the all-ferrous [Fe4 S4 ] cluster in the nitrogenase iron protein.
Protein Sci. 2016 Jan;25(1):12-8. doi: 10.1002/pro.2772. Epub 2015 Sep 1.
3
De novo-designed metallopeptides with type 2 copper centers: modulation of reduction potentials and nitrite reductase activities.
J Am Chem Soc. 2013 Dec 4;135(48):18096-107. doi: 10.1021/ja406648n. Epub 2013 Nov 19.
4
Identifying sequence determinants of reduction potentials of metalloproteins.
J Biol Inorg Chem. 2013 Aug;18(6):599-608. doi: 10.1007/s00775-013-1004-6. Epub 2013 May 21.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Calculating standard reduction potentials of [4Fe-4S] proteins.
J Comput Chem. 2013 Mar 15;34(7):576-82. doi: 10.1002/jcc.23169. Epub 2012 Nov 1.
3
Understanding rubredoxin redox sites by density functional theory studies of analogues.
J Phys Chem A. 2012 Sep 6;116(35):8918-24. doi: 10.1021/jp3057509. Epub 2012 Aug 27.
5
Fold versus sequence effects on the driving force for protein-mediated electron transfer.
Proteins. 2010 Oct;78(13):2798-808. doi: 10.1002/prot.22794.
7
9
Regulation of protein function: crystal packing interfaces and conformational dimerization.
Biochemistry. 2008 Jun 24;47(25):6583-9. doi: 10.1021/bi800125h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验