文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

水溶液中 Ag+与腐殖酸的相互作用:银纳米颗粒形成的机理及稳定性研究。

Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability.

机构信息

Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901, USA.

出版信息

Environ Sci Technol. 2013 Jan 15;47(2):757-64. doi: 10.1021/es302305f. Epub 2012 Dec 28.


DOI:10.1021/es302305f
PMID:23237319
Abstract

This study investigated the possible natural formation of silver nanoparticles (AgNPs) in Ag(+)-fulvic acid (FA) solutions under various environmentally relevant conditions (temperature, pH, and UV light). Increase in temperature (24-90 °C) and pH (6.1-9.0) of Ag(+)-Suwannee River fulvic acid (SRFA) solutions accelerated the appearance of the characteristic surface plasmon resonance (SPR) of AgNPs. The rate of AgNP formation via reduction of Ag(+) in the presence of different FAs (SRFA, Pahokee Peat fulvic acid, PPFA, Nordic lake fulvic acid, NLFA) and Suwannee River humic acid (SRHA) followed the order NLFA > SRHA > PPFA > SRFA. This order was found to be related to the free radical content of the acids, which was consistent with the proposed mechanism. The same order of AgNP growth was seen upon UV light illumination of Ag(+)-FA and Ag(+)-HA mixtures in moderately hard reconstituted water (MHRW). Stability studies of AgNPs, formed from the interactions of Ag(+)-SRFA, over a period of several months showed that these AgNPs were highly stable with SPR peak reductions of only ~15%. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements revealed bimodal particle size distributions of aged AgNPs. The stable AgNPs formed through the reduction of Ag(+) by fulvic and humic acid fractions of natural organic matter in the environment may be transported over significant distances and might also influence the overall bioavailability and ecotoxicity of AgNPs.

摘要

本研究在各种与环境相关的条件下(温度、pH 值和紫外光),考察了银离子(Ag(+))-富里酸(FA)溶液中银纳米颗粒(AgNPs)可能的自然形成。Ag(+) -苏万尼河富里酸(SRFA)溶液的温度(24-90°C)和 pH 值(6.1-9.0)的升高加速了 AgNPs 特征表面等离子体共振(SPR)的出现。在不同 FA(SRFA、Pahokee 泥炭富里酸、PPFA、北欧湖富里酸、NLFA)和苏万尼河腐殖酸(SRHA)存在下,通过还原 Ag(+)形成 AgNP 的速度遵循 NLFA > SRHA > PPFA > SRFA 的顺序。该顺序与酸的自由基含量有关,这与提出的机制一致。在中等硬度重制水中,Ag(+) -FA 和 Ag(+) -HA 混合物经紫外光照射后,AgNP 的生长也呈现出相同的顺序。在几个月的时间里,对由 Ag(+) -SRFA 相互作用形成的 AgNPs 的稳定性研究表明,这些 AgNPs 具有高度稳定性,SPR 峰值降低仅约 15%。透射电子显微镜(TEM)和动态光散射(DLS)测量表明,老化 AgNPs 的粒径分布呈双峰模式。在环境中,天然有机物的腐殖酸和富里酸部分通过还原 Ag(+)形成的稳定 AgNPs 可能会被运输到很远的距离,也可能会影响 AgNPs 的整体生物利用度和生态毒性。

相似文献

[1]
Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability.

Environ Sci Technol. 2012-12-28

[2]
Humic acid-induced silver nanoparticle formation under environmentally relevant conditions.

Environ Sci Technol. 2011-4-1

[3]
Transport and deposition of Suwannee River Humic Acid/Natural Organic Matter formed silver nanoparticles on silica matrices: the influence of solution pH and ionic strength.

Chemosphere. 2013-2-16

[4]
Environmental behavior and associated plant accumulation of silver nanoparticles in the presence of dissolved humic and fulvic acid.

Environ Pollut. 2018-9-20

[5]
The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter.

Sci Total Environ. 2012-11-17

[6]
Enhanced formation of silver nanoparticles in Ag+-NOM-iron(II, III) systems and antibacterial activity studies.

Environ Sci Technol. 2014-2-26

[7]
Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles.

Environ Sci Technol. 2013-1-18

[8]
Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles.

Chemosphere. 2012-5-12

[9]
Impact of light and Suwanee River Fulvic Acid on O and HO Mediated Oxidation of Silver Nanoparticles in Simulated Natural Waters.

Environ Sci Technol. 2019-5-24

[10]
Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles.

Water Res. 2013-1-12

引用本文的文献

[1]
Behavior of Silver Species in Soil: Ag Nanoparticles vs. Ionic Ag.

Molecules. 2024-11-22

[2]
Nanoparticulate pollutants in the environment: Analytical methods, formation, and transformation.

Eco Environ Health. 2023-5-10

[3]
Green Synthesis of Silver Nanoparticles Using Spent Coffee Ground Extracts: Process Modelling and Optimization.

Nanomaterials (Basel). 2022-7-28

[4]
Simultaneous Influence of Gradients in Natural Organic Matter and Abiotic Parameters on the Behavior of Silver Nanoparticles in the Transition Zone from Freshwater to Saltwater Environments.

Nanomaterials (Basel). 2022-1-17

[5]
Maternal Responses and Adaptive Changes to Environmental Stress via Chronic Nanomaterial Exposure: Differences in Inter and Transgenerational Interclonal Broods of .

Int J Mol Sci. 2020-12-22

[6]
Roles of Silver-Chloride Complexations in Sunlight-Driven Formation of Silver Nanoparticles.

Environ Sci Technol. 2019-9-13

[7]
Significant contribution of metastable particulate organic matter to natural formation of silver nanoparticles in soils.

Nat Commun. 2019-8-21

[8]
Silver near municipal wastewater discharges into western Lake Ontario, Canada.

Environ Monit Assess. 2018-8-28

[9]
Differential Response of Floating and Submerged Leaves of Longleaf Pondweed to Silver Ions.

Front Plant Sci. 2017-6-21

[10]
Stable silver isotope fractionation in the natural transformation process of silver nanoparticles.

Nat Nanotechnol. 2016-6-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索