Suppr超能文献

通过一项纵向的表观基因组全基因组关联研究(LEWAS)来研究基因与环境的相互作用,克服了全基因组关联研究(GWAS)的局限性。

Gene × environment interaction by a longitudinal epigenome-wide association study (LEWAS) overcomes limitations of genome-wide association study (GWAS).

机构信息

Department of Psychiatry, Laboratory of Molecular Neurogenetics, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

出版信息

Epigenomics. 2012 Dec;4(6):685-99. doi: 10.2217/epi.12.60.

Abstract

The goal of genome-wide association studies is to identify SNPs unique to disease. It usually involves a single sampling from subjects' lifetimes. While primary DNA sequence variation influences gene-expression levels, expression is also influenced by epigenetics, including the 'somatic epitype' (G(SE)), an epigenotype acquired postnatally. While genes are inherited, and novel polymorphisms do not routinely appear, G(SE) is fluid. Furthermore, G(SE) could respond to environmental factors (such as heavy metals) and to differences in exercise, maternal care and dietary supplements - all of which postnatally modify oxidation or methylation of DNA, leading to altered gene expression. Change in epigenetic status may be critical for the development of many diseases. We propose a 'longitudinal epigenome-wide association study', wherein G(SE) are measured at multiple time points along with subjects' histories. This Longitudinal epigenome-wide association study, based on the 'dynamic' somatic epitype over the 'static' genotype, merits further investigation.

摘要

全基因组关联研究的目的是确定与疾病相关的独特 SNP。它通常涉及从研究对象一生中采集的单个样本。虽然主要的 DNA 序列变异会影响基因表达水平,但基因表达也受到表观遗传学的影响,包括后天获得的“体细胞表型”(G(SE))。虽然基因是遗传的,并且新的多态性通常不会出现,但 G(SE)是流动的。此外,G(SE)可能会受到环境因素(如重金属)和运动、母婴护理和膳食补充剂的差异的影响——所有这些都会在后天改变 DNA 的氧化或甲基化,从而导致基因表达的改变。表观遗传状态的变化可能对许多疾病的发展至关重要。我们提出了一种“纵向全基因组关联研究”,其中 G(SE)在研究对象的病史中多个时间点进行测量。这种基于“动态”体细胞表型而非“静态”基因型的纵向全基因组关联研究值得进一步研究。

相似文献

2
Residential surrounding greenness and DNA methylation: An epigenome-wide association study.
Environ Int. 2021 Sep;154:106556. doi: 10.1016/j.envint.2021.106556. Epub 2021 Apr 13.
3
Measuring epigenetics as the mediator of gene/environment interactions in DOHaD.
J Dev Orig Health Dis. 2015 Feb;6(1):10-6. doi: 10.1017/S2040174414000506. Epub 2014 Oct 15.
4
Epigenome-wide association study of DNA methylation in panic disorder.
Clin Epigenetics. 2017 Jan 21;9:6. doi: 10.1186/s13148-016-0307-1. eCollection 2017.
5
Epigenetic drift in the aging genome: a ten-year follow-up in an elderly twin cohort.
Int J Epidemiol. 2016 Aug;45(4):1146-1158. doi: 10.1093/ije/dyw132. Epub 2016 Aug 6.
6
Epigenome-wide association study of depression symptomatology in elderly monozygotic twins.
Transl Psychiatry. 2019 Sep 2;9(1):214. doi: 10.1038/s41398-019-0548-9.
7
The relative contribution of DNA methylation and genetic variants on protein biomarkers for human diseases.
PLoS Genet. 2017 Sep 15;13(9):e1007005. doi: 10.1371/journal.pgen.1007005. eCollection 2017 Sep.
8
Somatic cell genomics of brain disorders: a new opportunity to clarify genetic-environmental interactions.
Cytogenet Genome Res. 2013;139(3):181-8. doi: 10.1159/000347053. Epub 2013 Feb 20.
9
Epigenetics of dementia: understanding the disease as a transformation rather than a state.
Lancet Neurol. 2016 Jun;15(7):760-774. doi: 10.1016/S1474-4422(16)00065-X. Epub 2016 May 9.
10
Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets.
PLoS Genet. 2014 Nov 6;10(11):e1004735. doi: 10.1371/journal.pgen.1004735. eCollection 2014 Nov.

引用本文的文献

1
Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics.
Nat Rev Neurol. 2022 Nov;18(11):643-660. doi: 10.1038/s41582-022-00714-w. Epub 2022 Sep 30.
2
Epigenetic dysregulation of brainstem nuclei in the pathogenesis of Alzheimer's disease: looking in the correct place at the right time?
Cell Mol Life Sci. 2017 Feb;74(3):509-523. doi: 10.1007/s00018-016-2361-4. Epub 2016 Sep 14.
3
Transgenerational latent early-life associated regulation unites environment and genetics across generations.
Epigenomics. 2016 Mar;8(3):373-87. doi: 10.2217/epi.15.117. Epub 2016 Mar 7.

本文引用的文献

1
Distinct functional patterns of gene promoter hypomethylation and hypermethylation in cancer genomes.
PLoS One. 2012;7(9):e44822. doi: 10.1371/journal.pone.0044822. Epub 2012 Sep 7.
2
Prions: a piece of the puzzle?
Science. 2012 Sep 7;337(6099):1172. doi: 10.1126/science.337.6099.1172-a.
3
Evidence for sequence biases associated with patterns of histone methylation.
BMC Genomics. 2012 Aug 2;13:367. doi: 10.1186/1471-2164-13-367.
4
DNA damage by reactive species: Mechanisms, mutation and repair.
J Biosci. 2012 Jul;37(3):503-17. doi: 10.1007/s12038-012-9218-2.
5
Prevalence of autism spectrum disorders in a total population sample.
Am J Psychiatry. 2011 Sep;168(9):904-12. doi: 10.1176/appi.ajp.2011.10101532. Epub 2011 May 9.
6
Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain.
Cell. 2011 Apr 29;145(3):423-34. doi: 10.1016/j.cell.2011.03.022. Epub 2011 Apr 14.
7
TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity.
Nature. 2011 May 19;473(7347):343-8. doi: 10.1038/nature10066. Epub 2011 Apr 13.
8
Epigenetic modifications induced by early enrichment are associated with changes in timing of induction of BDNF expression.
Neurosci Lett. 2011 May 20;495(3):168-72. doi: 10.1016/j.neulet.2011.03.038. Epub 2011 Mar 21.
9
Chronic high-fat diet drives postnatal epigenetic regulation of μ-opioid receptor in the brain.
Neuropsychopharmacology. 2011 May;36(6):1199-206. doi: 10.1038/npp.2011.4. Epub 2011 Feb 16.
10
An integrated approach to genome studies.
Science. 2011 Jan 14;331(6014):147. doi: 10.1126/science.331.6014.147-a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验