Ma Zhen, Zhou Weidong, Geng Shujuan, Yuan Qi, Li Xueli
School of Information Science and Engineering, Shandong University, 27 Shanda Road, Jinan, 250100, People's Republic of China.
Biol Cybern. 2013 Apr;107(2):131-40. doi: 10.1007/s00422-012-0541-3. Epub 2012 Dec 18.
A model of coupled neural masses can generate seizure-like events and dynamics similar to those observed during interictal to ictal transitions and thus can be used for theoretical study of the control of epileptic seizures. In an effort to understand the mechanisms underlying epileptic seizures and how to avoid them, we added a control input to this model. Epileptic seizures are always accompanied by hypersynchronous firing of neurons, so research on synchronization among cortical areas is significant for seizure control. In this study, principal component analysis (PCA) was used to identify synchronization clusters composed of several neural masses. A method for calculating the synchronization cluster strength and participation rate is presented. The synchronization cluster strength can be used to identify synchronization clusters and the participation rate can be employed to identify neural masses that participate in the clusters. Each synchronization cluster is controlled as a whole using a proportional-integral-derivative (PID) controller. We illustrate these points using coupled neural mass models of synchronization to show their responses to increased (between node) coupling with and without control. Experiment results indicated that PID control can effectively regulate synchronization between neural masses and has the potential for seizure prevention.
耦合神经团模型可以产生类似癫痫发作的事件和与发作间期到发作期转换期间观察到的动态相似的动态,因此可用于癫痫发作控制的理论研究。为了理解癫痫发作的潜在机制以及如何避免癫痫发作,我们向该模型添加了一个控制输入。癫痫发作总是伴随着神经元的超同步放电,因此对皮质区域之间同步的研究对于癫痫发作控制具有重要意义。在本研究中,主成分分析(PCA)用于识别由几个神经团组成的同步簇。提出了一种计算同步簇强度和参与率的方法。同步簇强度可用于识别同步簇,参与率可用于识别参与簇的神经团。使用比例积分微分(PID)控制器对每个同步簇进行整体控制。我们使用同步的耦合神经团模型来说明这些要点,以展示它们在有控制和无控制情况下对增加(节点之间)耦合的响应。实验结果表明,PID控制可以有效地调节神经团之间的同步,具有预防癫痫发作的潜力。