Philipps-Universität Marburg, Fachbereich Physik und Zentrum für Materialwissenschaften, Renthof 5, 35032 Marburg, Germany.
Phys Chem Chem Phys. 2013 Feb 7;15(5):1460-70. doi: 10.1039/c2cp42765f.
This article focuses on thermally induced methanol reactions on bimetallic Ru(0001)-based catalyst surfaces performed under ultrahigh vacuum conditions. Specifically, reaction intermediates and pathways on various clean and oxygen covered surfaces (Ru(0001), Cu/Ru(0001), Pt/Ru(0001), and Pt(x)Ru(1-x)/Ru(0001) surface alloys) have been studied by means of Fourier transform infrared spectroscopy and temperature programmed desorption. On the basis of our results and results reported in the literature methanol reactions on metal surfaces can be subdivided into two major pathways: (i) total dehydrogenation of methanol leading to CO, and (ii) an oxidation pathway which produces gaseous CO(2). On the clean surfaces either the dehydrogenation pathway is observed or no reaction occurs at all. The CO(2) producing path opens up only upon adsorption of oxygen. In parallel, the CO formation diminishes. In this context, the influence of oxygen on the yields of possible reaction products is analyzed. Generally, it is found that methanol reactions are promoted by disordered and dilute oxygen layers; dense and ordered O-overlayers, on the other hand, passivate the surface effectively. Referring to the direct methanol fuel cell (DMFC), a significant drawback of adding oxygen is the reaction of the oxygen atoms with hydrogen from methanol dehydrogenation to gaseous water. As hydrogen is the energy provider in a DMFC the desorbing water represents an unwanted drain of H atoms. Interestingly, the surfaces which produce the highest amount of CO(2) are also most efficient with respect to water formation. As the drain of H atoms on oxygen covered Pt(x)Ru(1-x)/Ru(0001) surface alloys is limited and they nonetheless exhibit CO(2) as a final product they represent a compromise regarding the ideal catalyst material for a DMFC. In particular, alloys with a Pt content of 50-80% are found to display superior performance.
本文重点研究了在超高真空条件下,双金属 Ru(0001)基催化剂表面上的热诱导甲醇反应。具体来说,通过傅里叶变换红外光谱和程序升温脱附研究了各种清洁和含氧覆盖表面(Ru(0001)、Cu/Ru(0001)、Pt/Ru(0001)和 Pt(x)Ru(1-x)/Ru(0001)表面合金)上的反应中间体和途径。根据我们的结果和文献中的结果,金属表面上的甲醇反应可以分为两条主要途径:(i)甲醇的完全脱氢生成 CO,和 (ii)产生气态 CO(2)的氧化途径。在清洁表面上,要么观察到脱氢途径,要么根本没有反应发生。只有在吸附氧的情况下,才会打开产生 CO(2)的路径。与此同时,CO 的形成减少。在这种情况下,分析了氧对可能反应产物产率的影响。一般来说,发现甲醇反应受到无序和稀氧层的促进;另一方面,致密和有序的 O 覆盖层有效地使表面钝化。就直接甲醇燃料电池 (DMFC) 而言,添加氧的一个显著缺点是氧原子与甲醇脱氢产生的氢反应生成气态水。由于氢是 DMFC 中的能量提供者,脱附的水代表了 H 原子的不必要流失。有趣的是,产生最多 CO(2)的表面在形成水方面也最有效。由于在含氧 Pt(x)Ru(1-x)/Ru(0001)表面合金上覆盖的氧原子会限制 H 原子的流失,并且它们仍然表现出 CO(2)作为最终产物,因此它们代表了理想的 DMFC 催化剂材料的折衷。特别是,发现 Pt 含量为 50-80%的合金具有优异的性能。