Suppr超能文献

量子蒙特卡罗反应途径:1,3-丁二烯扭转势垒和环丁烯对旋开环的深入了解。

Reaction pathways by quantum Monte Carlo: insight on the torsion barrier of 1,3-butadiene, and the conrotatory ring opening of cyclobutene.

机构信息

Dipartimento di Matematica Pura ed Applicata, Università degli studi dell'Aquila, via Vetoio (Coppito 2), 67100 L'Aquila, Italy.

出版信息

J Chem Phys. 2012 Dec 14;137(22):224309. doi: 10.1063/1.4769791.

Abstract

Quantum Monte Carlo (QMC) methods are used to investigate the intramolecular reaction pathways of 1,3-butadiene. The ground state geometries of the three conformers s-trans, s-cis, and gauche, as well as the cyclobutene structure are fully optimised at the variational Monte Carlo (VMC) level, obtaining an excellent agreement with the experimental results and other quantum chemistry high level calculations. Transition state geometries are also estimated at the VMC level for the s-trans to gauche torsion barrier of 1,3-butadiene and for the conrotatory ring opening of cyclobutene to the gauche-1,3-butadiene conformer. The energies of the conformers and the reaction barriers are calculated at both variational and diffusional Monte Carlo levels providing a precise picture of the potential energy surface of 1,3-butadiene and supporting one of the two model profiles recently obtained by Raman spectroscopy [Boopalachandran et al., J. Phys. Chem. A 115, 8920 (2011)]. Considering the good scaling of QMC techniques with the system's size, our results also demonstrate how variational Monte Carlo calculations can be applied in the future to properly investigate the reaction pathways of large and correlated molecular systems.

摘要

量子蒙特卡罗(QMC)方法被用于研究 1,3-丁二烯的分子内反应途径。三种构象 s-反式、s-顺式和 gauche 以及环丁烯结构的基态几何形状在变分蒙特卡罗(VMC)水平上进行了完全优化,与实验结果和其他量子化学高级计算得出了极好的一致性。对于 1,3-丁二烯的 s-反式到 gauche 扭转势垒和环丁烯到 gauche-1,3-丁二烯构象的协同开环,也在 VMC 水平上估算了过渡态几何形状。构象的能量和反应势垒在变分和扩散蒙特卡罗水平上进行了计算,为 1,3-丁二烯的势能面提供了精确的描述,并支持了最近通过拉曼光谱获得的两个模型轮廓之一[Boopalachandran 等人,J. Phys. Chem. A 115, 8920(2011)]。考虑到 QMC 技术与系统大小的良好缩放性,我们的结果还表明,变分蒙特卡罗计算如何在未来应用于正确研究大相关分子系统的反应途径。

相似文献

3
Chemical accuracy from quantum Monte Carlo for the benzene dimer.
J Chem Phys. 2015 Sep 14;143(10):104301. doi: 10.1063/1.4930137.
4
Kohn-Sham orbitals and potentials from quantum Monte Carlo molecular densities.
J Chem Phys. 2014 Feb 7;140(5):054102. doi: 10.1063/1.4863213.
5
Ground State Geometries of Polyacetylene Chains from Many-Particle Quantum Mechanics.
J Chem Theory Comput. 2015 Sep 8;11(9):4109-18. doi: 10.1021/acs.jctc.5b00427.
7
Perturbatively Selected Configuration-Interaction Wave Functions for Efficient Geometry Optimization in Quantum Monte Carlo.
J Chem Theory Comput. 2018 Aug 14;14(8):4176-4182. doi: 10.1021/acs.jctc.8b00393. Epub 2018 Jul 20.
8
Structural Optimization by Quantum Monte Carlo: Investigating the Low-Lying Excited States of Ethylene.
J Chem Theory Comput. 2012 Apr 10;8(4):1260-1269. doi: 10.1021/ct200724q.
9
Static and Dynamical Correlation in Diradical Molecules by Quantum Monte Carlo Using the Jastrow Antisymmetrized Geminal Power Ansatz.
J Chem Theory Comput. 2014 Mar 11;10(3):1048-61. doi: 10.1021/ct401008s. Epub 2014 Feb 27.
10
Nonlocal behavior of an electron in the ring-opening of cyclobutene.
J Phys Chem A. 2011 Jul 21;115(28):8167-77. doi: 10.1021/jp2039652. Epub 2011 Jun 24.

引用本文的文献

1
Converting Second-Order Saddle Points to Transition States: New Principles for the Design of 4π Photoswitches.
Chemphyschem. 2025 Jan 14;26(2):e202400786. doi: 10.1002/cphc.202400786. Epub 2024 Nov 24.
2
Polaritonic Chemistry: Hindering and Easing Ground State Polyenic Isomerization via Breakdown of σ-π Separation.
J Phys Chem Lett. 2023 Oct 12;14(40):9145-9149. doi: 10.1021/acs.jpclett.3c02081. Epub 2023 Oct 5.
4
Ground State Geometries of Polyacetylene Chains from Many-Particle Quantum Mechanics.
J Chem Theory Comput. 2015 Sep 8;11(9):4109-18. doi: 10.1021/acs.jctc.5b00427.
6
Diels-Alder reactions of allene with benzene and butadiene: concerted, stepwise, and ambimodal transition states.
J Org Chem. 2014 Oct 3;79(19):8968-76. doi: 10.1021/jo502041f. Epub 2014 Sep 18.

本文引用的文献

1
Scanning Reactive Pathways with Orbital Biased Molecular Dynamics.
J Chem Theory Comput. 2005 Jul;1(4):554-60. doi: 10.1021/ct050081v.
2
Dissecting the Hydrogen Bond: A Quantum Monte Carlo Approach.
J Chem Theory Comput. 2008 Sep 9;4(9):1428-34. doi: 10.1021/ct800121e.
3
Electronic Excitations of Simple Cyanine Dyes: Reconciling Density Functional and Wave Function Methods.
J Chem Theory Comput. 2011 Feb 8;7(2):444-55. doi: 10.1021/ct1006295. Epub 2011 Jan 10.
4
Molecular Electrical Properties from Quantum Monte Carlo Calculations: Application to Ethyne.
J Chem Theory Comput. 2012 Jun 12;8(6):1952-62. doi: 10.1021/ct300171q. Epub 2012 May 4.
5
Structural Optimization by Quantum Monte Carlo: Investigating the Low-Lying Excited States of Ethylene.
J Chem Theory Comput. 2012 Apr 10;8(4):1260-1269. doi: 10.1021/ct200724q.
7
Optimized Structure and Vibrational Properties by Error Affected Potential Energy Surfaces.
J Chem Theory Comput. 2012 Nov 13;8(11):4204-4215. doi: 10.1021/ct300576n.
8
Finite-temperature electronic simulations without the Born-Oppenheimer constraint.
J Chem Phys. 2012 Oct 7;137(13):134112. doi: 10.1063/1.4755992.
9
Quantum Monte Carlo study of the Retinal Minimal Model C5H6NH2+.
J Comput Chem. 2012 Nov 5;33(29):2332-9. doi: 10.1002/jcc.23071. Epub 2012 Jul 17.
10
Excitation energies of retinal chromophores: critical role of the structural model.
Phys Chem Chem Phys. 2012 Aug 21;14(31):11015-20. doi: 10.1039/c2cp41387f. Epub 2012 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验