Dipartimento di Matematica Pura ed Applicata, Università degli studi dell'Aquila, via Vetoio (Coppito 2), 67100 L'Aquila, Italy.
J Chem Phys. 2012 Dec 14;137(22):224309. doi: 10.1063/1.4769791.
Quantum Monte Carlo (QMC) methods are used to investigate the intramolecular reaction pathways of 1,3-butadiene. The ground state geometries of the three conformers s-trans, s-cis, and gauche, as well as the cyclobutene structure are fully optimised at the variational Monte Carlo (VMC) level, obtaining an excellent agreement with the experimental results and other quantum chemistry high level calculations. Transition state geometries are also estimated at the VMC level for the s-trans to gauche torsion barrier of 1,3-butadiene and for the conrotatory ring opening of cyclobutene to the gauche-1,3-butadiene conformer. The energies of the conformers and the reaction barriers are calculated at both variational and diffusional Monte Carlo levels providing a precise picture of the potential energy surface of 1,3-butadiene and supporting one of the two model profiles recently obtained by Raman spectroscopy [Boopalachandran et al., J. Phys. Chem. A 115, 8920 (2011)]. Considering the good scaling of QMC techniques with the system's size, our results also demonstrate how variational Monte Carlo calculations can be applied in the future to properly investigate the reaction pathways of large and correlated molecular systems.
量子蒙特卡罗(QMC)方法被用于研究 1,3-丁二烯的分子内反应途径。三种构象 s-反式、s-顺式和 gauche 以及环丁烯结构的基态几何形状在变分蒙特卡罗(VMC)水平上进行了完全优化,与实验结果和其他量子化学高级计算得出了极好的一致性。对于 1,3-丁二烯的 s-反式到 gauche 扭转势垒和环丁烯到 gauche-1,3-丁二烯构象的协同开环,也在 VMC 水平上估算了过渡态几何形状。构象的能量和反应势垒在变分和扩散蒙特卡罗水平上进行了计算,为 1,3-丁二烯的势能面提供了精确的描述,并支持了最近通过拉曼光谱获得的两个模型轮廓之一[Boopalachandran 等人,J. Phys. Chem. A 115, 8920(2011)]。考虑到 QMC 技术与系统大小的良好缩放性,我们的结果还表明,变分蒙特卡罗计算如何在未来应用于正确研究大相关分子系统的反应途径。