Suppr超能文献

使用NARMAX模型分析QT-RR变异性相互作用。

Analysis of the QT-RR variability interactions using the NARMAX model.

作者信息

Baakek Y N, Bereksi Reguig F, Hadj Slimane Z E

机构信息

Biomedical Engineering Laboratory (GBM), Department of Electrical Engineering and Electronics, Tlemcen University, Algeria.

出版信息

J Med Eng Technol. 2013 Jan;37(1):48-55. doi: 10.3109/03091902.2012.728672. Epub 2012 Dec 18.

Abstract

In this paper a new approach is used in order to evaluate and quantify the interactions between the QT and RR intervals. This is achieved after the identification of the RR and QT series with a hybrid model (the non-linear autoregressive moving average with exogenous input (NARMAX)). This identification follows two steps: the first is a linear parametric identification corresponding to the MA model, whereas the second is a non-linear identification using the NARX model. The power spectral density PSD of RR and QT is computed by using the monovariate part of this model (MA model). The QT-related RR series is obtained by using the bivariate part corresponding to the NARX model and its PSD is determined by using the autoregressive method. Then a cross-spectral and the coherence function were determined in order to confirm the obtained results. Different heart pathology cases were selected to evaluate the approach: the normal case, the cases which represent long QT intervals and some other cases which represent short QT intervals. They were taken from the MIT BIH database. The results show that every case illustrates two frequencies; the first in the low frequency band LF and the second in the high frequency band HF. In the normal case and long QT interval cases, the LF was predominating in the QT, RR and in QT-related RR power spectral density PSD. In the short QT interval cases the HF was much larger in all cases. The obtained results were compared to the poincaré plot method which confirms it; however, the NARMAX model can distinguish between normal and pathologic cases with a great precision (p < 0.001). In addition, the QT variability index QTVI is computed and represented by a box plot which expresses the relationship between QT and RR intervals. The QTVI shows a large variability in the short QT interval cases, whereas it shows a small and a negative variability in the long QT interval case.

摘要

在本文中,采用了一种新方法来评估和量化QT与RR间期之间的相互作用。这是通过使用混合模型(带外部输入的非线性自回归移动平均模型(NARMAX))识别RR和QT序列后实现的。该识别过程分为两步:第一步是对应于MA模型的线性参数识别,而第二步是使用NARX模型的非线性识别。RR和QT的功率谱密度PSD通过使用该模型的单变量部分(MA模型)来计算。与QT相关的RR序列通过使用对应于NARX模型的双变量部分获得,其PSD通过自回归方法确定。然后确定交叉谱和相干函数以确认所得结果。选择了不同的心脏病理病例来评估该方法:正常病例、代表长QT间期的病例以及其他一些代表短QT间期的病例。它们取自麻省理工学院生物医学数据库(MIT BIH database)。结果表明,每个病例都呈现出两个频率;第一个在低频带LF,第二个在高频带HF。在正常病例和长QT间期病例中,LF在QT、RR以及与QT相关的RR功率谱密度PSD中占主导地位。在短QT间期病例中,HF在所有情况下都大得多。将所得结果与庞加莱图方法进行比较,该方法证实了结果;然而,NARMAX模型能够以高精度(p < 0.001)区分正常和病理病例。此外,计算了QT变异性指数QTVI并用箱线图表示,该图表达了QT与RR间期之间的关系。QTVI在短QT间期病例中显示出较大的变异性,而在长QT间期病例中显示出较小且为负的变异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验