Suppr超能文献

靶向拓扑异构酶药物:经验与挑战。

Drugging topoisomerases: lessons and challenges.

机构信息

Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States.

出版信息

ACS Chem Biol. 2013 Jan 18;8(1):82-95. doi: 10.1021/cb300648v. Epub 2013 Jan 4.

Abstract

Topoisomerases are ubiquitous enzymes that control DNA supercoiling and entanglements. They are essential during transcription and replication, and topoisomerase inhibitors are among the most effective and most commonly used anticancer and antibacterial drugs. This review consists of two parts. In the first part ("Lessons"), it gives background information on the catalytic mechanisms of the different enzyme families (6 different genes in humans and 4 in most bacteria), describes the "interfacial inhibition" by which topoisomerase-targeted drugs act as topoisomerase poisons, and describes clinically relevant topoisomerase inhibitors. It generalizes the interfacial inhibition principle, which was discovered from the mechanism of action of topoisomerase inhibitors, and discusses how topoisomerase inhibitors kill cells by trapping topoisomerases on DNA rather than by classical enzymatic inhibition. Trapping protein-DNA complexes extends to a novel mechanism of action of PARP inhibitors and could be applied to the targeting of transcription factors. The second part of the review focuses on the challenges for discovery and precise use of topoisomerase inhibitors, including targeting topoisomerase inhibitors using chemical coupling and encapsulation for selective tumor delivery, use of pharmacodynamic biomarkers to follow drug activity, complexity of the response determinants for anticancer activity and patient selection, prospects of rational combinations with DNA repair inhibitors targeting tyrosyl-DNA-phosphodiesterases 1 and 2 (TDP1 and TDP2) and PARP, and the unmet need to develop inhibitors for type IA enzymes.

摘要

拓扑异构酶是普遍存在的酶,可控制 DNA 的超螺旋和缠绕。它们在转录和复制过程中是必不可少的,拓扑异构酶抑制剂是最有效和最常用的抗癌和抗菌药物之一。这篇综述由两部分组成。第一部分(“教训”)提供了不同酶家族(人类有 6 种不同的基因,大多数细菌有 4 种)的催化机制的背景信息,描述了拓扑异构酶靶向药物作为拓扑异构酶毒物起作用的“界面抑制”,并描述了临床上相关的拓扑异构酶抑制剂。它概括了界面抑制原理,该原理是从拓扑异构酶抑制剂的作用机制中发现的,并讨论了拓扑异构酶抑制剂如何通过将拓扑异构酶捕获在 DNA 上而不是通过经典的酶抑制来杀死细胞。捕获蛋白-DNA 复合物扩展到 PARP 抑制剂的新作用机制,并可应用于转录因子的靶向。综述的第二部分重点介绍了发现和精确使用拓扑异构酶抑制剂的挑战,包括使用化学偶联和封装将拓扑异构酶抑制剂靶向用于选择性肿瘤递药,使用药效动力学生物标志物来跟踪药物活性,抗癌活性和患者选择的反应决定因素的复杂性,针对酪氨酰-DNA-磷酸二酯酶 1 和 2(TDP1 和 TDP2)和 PARP 的 DNA 修复抑制剂的合理组合的前景,以及开发针对 I 型酶的抑制剂的未满足需求。

相似文献

1
Drugging topoisomerases: lessons and challenges.
ACS Chem Biol. 2013 Jan 18;8(1):82-95. doi: 10.1021/cb300648v. Epub 2013 Jan 4.
2
Topoisomerases as anticancer targets.
Biochem J. 2018 Jan 23;475(2):373-398. doi: 10.1042/BCJ20160583.
3
Topoisomerase as target for antibacterial and anticancer drug discovery.
J Enzyme Inhib Med Chem. 2013 Jun;28(3):419-35. doi: 10.3109/14756366.2012.658785. Epub 2012 Mar 1.
4
Topoisomerase Inhibitors and Targeted Delivery in Cancer Therapy.
Curr Top Med Chem. 2019;19(9):713-729. doi: 10.2174/1568026619666190401112948.
5
Emerging Role of Natural Topoisomerase Inhibitors as Anticancer agents.
Med Chem. 2025;21(3):195-210. doi: 10.2174/0115734064311729240911102646.
6
DNA topoisomerases and their poisoning by anticancer and antibacterial drugs.
Chem Biol. 2010 May 28;17(5):421-33. doi: 10.1016/j.chembiol.2010.04.012.
7
DNA Topoisomerases as Targets for Antibacterial Agents.
Methods Mol Biol. 2018;1703:47-62. doi: 10.1007/978-1-4939-7459-7_3.
8
Targeting bacterial topoisomerases: how to counter mechanisms of resistance.
Future Med Chem. 2016 Jun;8(10):1085-100. doi: 10.4155/fmc-2016-0042. Epub 2016 Jun 10.
9
Tyrosyl-DNA phosphodiesterase inhibitors: Progress and potential.
Bioorg Med Chem. 2016 Nov 1;24(21):5017-5027. doi: 10.1016/j.bmc.2016.09.045. Epub 2016 Sep 20.
10
Discovery and Development of Topoisomerase Inhibitors as Anticancer Agents.
Mini Rev Med Chem. 2016;16(15):1219-1229. doi: 10.2174/1389557516666160822110819.

引用本文的文献

1
Repurposing fluoroquinolones as cancer chemosensitizers: a way to overcome cancer therapeutic bottleneck.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Aug 11. doi: 10.1007/s00210-025-04508-x.
2
Unraveling the Role of Topoisomerase 3β (TOP3B) in mRNA Translation and Human Disease.
Wiley Interdiscip Rev RNA. 2025 Jul-Aug;16(4):e70020. doi: 10.1002/wrna.70020.
3
Deep structure-function analysis of the endonuclease Mus81 with dominant mutational scanning.
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2506043122. doi: 10.1073/pnas.2506043122. Epub 2025 Jun 18.
5
6
Deciphering linezolid-induced hematologic toxicity: Targeting TOP2A and TOP2B via its primary metabolite PNU142586.
Sci Adv. 2025 May 30;11(22):eadt5833. doi: 10.1126/sciadv.adt5833. Epub 2025 May 28.
8
10
Preclinical evaluation of a novel antibody-drug conjugate OBI-992 for Cancer therapy.
Sci Rep. 2025 Mar 13;15(1):8735. doi: 10.1038/s41598-025-92697-z.

本文引用的文献

1
Development and validation of an immunoassay for quantification of topoisomerase I in solid tumor tissues.
PLoS One. 2012;7(12):e50494. doi: 10.1371/journal.pone.0050494. Epub 2012 Dec 28.
2
Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors.
Cancer Res. 2012 Nov 1;72(21):5588-99. doi: 10.1158/0008-5472.CAN-12-2753.
3
Identification of the molecular basis of doxorubicin-induced cardiotoxicity.
Nat Med. 2012 Nov;18(11):1639-42. doi: 10.1038/nm.2919. Epub 2012 Oct 28.
4
Structural basis for recognition of 5'-phosphotyrosine adducts by Tdp2.
Nat Struct Mol Biol. 2012 Dec;19(12):1372-7. doi: 10.1038/nsmb.2423. Epub 2012 Oct 28.
5
Mechanism of repair of 5'-topoisomerase II-DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2.
Nat Struct Mol Biol. 2012 Dec;19(12):1363-71. doi: 10.1038/nsmb.2418. Epub 2012 Oct 28.
6
Global fluoroquinolone resistance epidemiology and implictions for clinical use.
Interdiscip Perspect Infect Dis. 2012;2012:976273. doi: 10.1155/2012/976273. Epub 2012 Oct 14.
8
Structure of a topoisomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity.
Nat Struct Mol Biol. 2012 Nov;19(11):1147-54. doi: 10.1038/nsmb.2388. Epub 2012 Sep 30.
9
A kinetic clutch governs religation by type IB topoisomerases and determines camptothecin sensitivity.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16125-30. doi: 10.1073/pnas.1206480109. Epub 2012 Sep 18.
10
Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents.
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):15030-5. doi: 10.1073/pnas.1205943109. Epub 2012 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验