School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA.
Biophys J. 2012 Dec 19;103(12):2502-12. doi: 10.1016/j.bpj.2012.11.012. Epub 2012 Dec 18.
DNA methylation is an important epigenetic mark that is known to induce chromatin condensation and gene silencing. We used a time-domain fluorescence lifetime measurement to quantify the effects of DNA hypermethylation on the conformation and dynamics of a nucleosome. Nucleosomes reconstituted on an unmethylated and a methylated DNA both exhibit dynamic conformations under physiological conditions. The DNA end breathing motion and the H2A-H2B dimer destabilization dominate the dynamic behavior of nucleosomes at low to medium ionic strength. Extensive DNA CpG methylation, surprisingly, does not help to restrain the DNA breathing motion, but facilitates the formation of a more open nucleosome conformation. The presence of the divalent cation, Mg(2+), essential for chromatin compaction, and the methyl donor molecule SAM, required for DNA methyltransferase reaction, facilitate the compaction of both types of nucleosomes. The difference between the unmethylated and the methylated nucleosome persists within a broad range of salt concentrations, but vanishes under high magnesium concentrations. Reduced DNA backbone rigidity due to the presence of methyl groups is believed to contribute to the observed structural and dynamic differences. The observation of this study suggests that DNA methylation alone does not compact chromatin at the nucleosomal level and provides molecular details to understand the regulatory role of DNA methylation in gene expression.
DNA 甲基化是一种重要的表观遗传标记,已知它能诱导染色质凝聚和基因沉默。我们使用时域荧光寿命测量来定量研究 DNA 超甲基化对核小体构象和动力学的影响。在生理条件下,在非甲基化和甲基化 DNA 上重建的核小体都表现出动态构象。DNA 末端呼吸运动和 H2A-H2B 二聚体的不稳定性主导着低离子强度到中等离子强度下核小体的动态行为。令人惊讶的是,广泛的 DNA CpG 甲基化并不能帮助抑制 DNA 呼吸运动,反而有利于形成更开放的核小体构象。对于染色质紧缩至关重要的二价阳离子 Mg(2+)和用于 DNA 甲基转移酶反应的甲基供体分子 SAM 的存在,促进了两种核小体的紧缩。在广泛的盐浓度范围内,未甲基化和甲基化核小体之间的差异仍然存在,但在高镁浓度下消失。由于甲基的存在导致 DNA 骨架刚性降低,被认为是导致观察到的结构和动力学差异的原因。本研究的观察结果表明,DNA 甲基化本身并不能在核小体水平上紧缩染色质,并为理解 DNA 甲基化在基因表达中的调控作用提供了分子细节。