Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109-5615, USA.
Anesthesiology. 2013 Feb;118(2):327-36. doi: 10.1097/ALN.0b013e31827d413e.
Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release.
Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and the time to recovery of righting response (RoRR) was quantified after a PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1, 3-dipropyl-8-cyclopentylxanthine, or SPA and 1, 3-dipropyl-8-cyclopentylxanthine.
First, SPA significantly decreased respiratory rate (-18%), tidal volume (-12%), and minute ventilation (-16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). 1, 3-dipropyl-8-cyclopentylxanthine alone caused a concentration-dependent increase in acetylcholine, a decrease in RoRR, and a decrease in breathing rate. Coadministration of SPA and 1, 3-dipropyl-8-cyclopentylxanthine blocked the SPA-induced decrease in acetylcholine and increase in RoRR.
Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing.
临床前和临床数据表明,腺苷具有镇痛作用。然而,通过中枢给予腺苷激动剂,通过尚未完全了解的机制来抑制觉醒和呼吸。本研究通过测试以下双尾假设来检验该理论,即在 C57BL/6J 小鼠的脑桥网状结构(PRF)中的腺苷 A1 受体通过调制呼吸、行为觉醒和 PRF 乙酰胆碱释放来发挥作用。
该研究使用了 51 只小鼠进行了三组实验。首先,通过体积描记法测量 PRF 微注射腺苷 A1 受体激动剂 N-磺基苯腺苷(SPA)或生理盐水后的呼吸情况。其次,在异氟烷麻醉下,通过 PRF 微注射 SPA 或生理盐水来量化恢复翻正反射(RoRR)的时间。最后,在微透析输送 SPA、腺苷 A1 受体拮抗剂 1,3-二丙基-8-环戊基黄嘌呤或 SPA 和 1,3-二丙基-8-环戊基黄嘌呤之前和期间,测量 PRF 中的乙酰胆碱释放。
首先,SPA 显著降低了呼吸频率(-18%)、潮气量(-12%)和分钟通气量(-16%)。其次,SPA 浓度解释了 RoRR 方差的 76%。最后,SPA 浓度解释了乙酰胆碱释放(52%)、RoRR(98%)和呼吸频率(86%)方差的大部分。单独的 1,3-二丙基-8-环戊基黄嘌呤导致乙酰胆碱浓度依赖性增加、RoRR 降低和呼吸频率降低。SPA 和 1,3-二丙基-8-环戊基黄嘌呤的共同给药阻断了 SPA 诱导的乙酰胆碱增加和 RoRR 增加。
内源性腺苷通过脑桥网状结构中的腺苷 A1 受体起作用,调节呼吸、行为觉醒和乙酰胆碱释放。这些结果支持这样的解释,即脑桥网状结构中的一个腺苷能-胆碱能相互作用构成了呼吸觉醒刺激的一个神经化学机制。