Suppr超能文献

从多个 iTRAQ 实验中进行无共同参考标准的统计推断。

Statistical inference from multiple iTRAQ experiments without using common reference standards.

机构信息

Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

出版信息

J Proteome Res. 2013 Feb 1;12(2):594-604. doi: 10.1021/pr300624g. Epub 2013 Jan 16.

Abstract

Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry technology for protein identification and quantification that is capable of analyzing multiple samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot from a pool of all samples, or "masterpool", in one of the channels as a reference sample standard to estimate protein relative abundances in the biological samples and to combine abundance estimates from multiple experiments. In this manuscript, we show that using a masterpool is counterproductive. We obtain more precise estimates of protein relative abundance by using the available biological data instead of the masterpool and do not need to occupy a channel that could otherwise be used for another biological sample. In addition, we introduce a simple statistical method to associate proteomic data from multiple iTRAQ experiments with a numeric response and show that this approach is more powerful than the conventionally employed masterpool-based approach. We illustrate our methods using data from four replicate iTRAQ experiments on aliquots of the same pool of plasma samples and from a 406-sample project designed to identify plasma proteins that covary with nutrient concentrations in chronically undernourished children from South Asia.

摘要

相对和绝对定量的同位素标记技术(iTRAQ)是一种用于蛋白质鉴定和定量的重要质谱技术,能够在单次实验中分析多个样本。通常,iTRAQ 实验使用混合所有样本的等分试样(或“主池”)之一作为参考样品标准,以估计生物样品中蛋白质的相对丰度,并结合来自多个实验的丰度估计值。在本文中,我们表明使用主池是适得其反的。我们通过使用可用的生物学数据而不是主池来获得更精确的蛋白质相对丰度估计值,并且不需要占用原本可以用于另一个生物样本的通道。此外,我们引入了一种简单的统计方法,将来自多个 iTRAQ 实验的蛋白质组学数据与数值响应相关联,并表明这种方法比传统的基于主池的方法更有效。我们使用来自同一血浆样本主池等分试样的四个重复 iTRAQ 实验的数据以及一个 406 样本项目的数据来说明我们的方法,该项目旨在鉴定与南亚长期营养不良儿童营养浓度相关的血浆蛋白质。

相似文献

1
Statistical inference from multiple iTRAQ experiments without using common reference standards.
J Proteome Res. 2013 Feb 1;12(2):594-604. doi: 10.1021/pr300624g. Epub 2013 Jan 16.
2
Isobaric labeling and data normalization without requiring protein quantitation.
J Biomol Tech. 2012 Apr;23(1):11-23. doi: 10.7171/jbt.12-2301-002.
3
iTRAQ analysis with Paul ion trap-obstacle solved.
J Proteome Res. 2013 Oct 4;12(10):4607-11. doi: 10.1021/pr400316x. Epub 2013 Sep 12.
4
Immunodepletion plasma proteomics by tripleTOF 5600 and Orbitrap elite/LTQ-Orbitrap Velos/Q exactive mass spectrometers.
J Proteome Res. 2013 Oct 4;12(10):4351-65. doi: 10.1021/pr400307u. Epub 2013 Sep 19.
5
Isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-Based Protein Profiling in Plants.
Methods Mol Biol. 2016;1450:213-21. doi: 10.1007/978-1-4939-3759-2_17.
6
Quantitative Peptidomics: General Considerations.
Methods Mol Biol. 2018;1719:121-140. doi: 10.1007/978-1-4939-7537-2_8.
7
Combination of gas-phase fractionation and MS³ acquisition modes for relative protein quantification with isobaric tagging.
J Proteome Res. 2012 Oct 5;11(10):5081-9. doi: 10.1021/pr300519c. Epub 2012 Sep 14.
10
Analysis of Reproducibility of Proteome Coverage and Quantitation Using Isobaric Mass Tags (iTRAQ and TMT).
J Proteome Res. 2017 Feb 3;16(2):384-392. doi: 10.1021/acs.jproteome.5b01154. Epub 2016 Dec 7.

引用本文的文献

2
Inhibition of Cardiac p38 Highlights the Role of the Phosphoproteome in Heart Failure Progression.
ACS Omega. 2025 Aug 6;10(32):36082-36097. doi: 10.1021/acsomega.5c03687. eCollection 2025 Aug 19.
3
ProMix: Enhancing Protein Quantification through Experimental Design and Statistical Normalization.
J Proteome Res. 2025 Aug 1;24(8):3808-3817. doi: 10.1021/acs.jproteome.4c01108. Epub 2025 Jul 7.
4
Proteomic analysis of hippocampus reveals metabolic reprogramming in a piglet model of mild hypoxic ischemic encephalopathy.
PLoS One. 2025 Apr 24;20(4):e0320869. doi: 10.1371/journal.pone.0320869. eCollection 2025.
6
Inhibition of Cardiac p38 Highlights the Role of the Phosphoproteome in Heart Failure Progression.
bioRxiv. 2024 Nov 20:2024.11.20.624554. doi: 10.1101/2024.11.20.624554.
7
Activation of Cell-Intrinsic Signaling in CAR-T Cells via a Chimeric IL7R Domain.
Cancer Res Commun. 2024 Sep 1;4(9):2359-2373. doi: 10.1158/2767-9764.CRC-24-0286.
8
Proteomic changes in the hippocampus of large mammals after total-body low dose radiation.
PLoS One. 2024 Mar 1;19(3):e0296903. doi: 10.1371/journal.pone.0296903. eCollection 2024.
9
Serum/Plasma Proteome in Non-Malignant Liver Disease.
Int J Mol Sci. 2024 Feb 7;25(4):2008. doi: 10.3390/ijms25042008.
10
ATP7A-dependent copper sequestration contributes to termination of β-CATENIN signaling during early adipogenesis.
Mol Metab. 2024 Feb;80:101872. doi: 10.1016/j.molmet.2024.101872. Epub 2024 Jan 6.

本文引用的文献

1
Computational mass spectrometry-based proteomics.
PLoS Comput Biol. 2011 Dec;7(12):e1002277. doi: 10.1371/journal.pcbi.1002277. Epub 2011 Dec 1.
2
Addressing accuracy and precision issues in iTRAQ quantitation.
Mol Cell Proteomics. 2010 Sep;9(9):1885-97. doi: 10.1074/mcp.M900628-MCP200. Epub 2010 Apr 10.
3
iQuantitator: a tool for protein expression inference using iTRAQ.
BMC Bioinformatics. 2009 Oct 18;10:342. doi: 10.1186/1471-2105-10-342.
4
Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal.
J Nutr. 2009 Aug;139(8):1575-81. doi: 10.3945/jn.109.106666. Epub 2009 Jun 23.
5
Getting started in computational mass spectrometry-based proteomics.
PLoS Comput Biol. 2009 May;5(5):e1000366. doi: 10.1371/journal.pcbi.1000366. Epub 2009 May 29.
7
A statistical model for iTRAQ data analysis.
J Proteome Res. 2008 Aug;7(8):3091-101. doi: 10.1021/pr070520u. Epub 2008 Jun 26.
8
Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA.
J Proteome Res. 2008 Jan;7(1):225-33. doi: 10.1021/pr700734f. Epub 2008 Jan 4.
9
Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases.
Mol Cell Proteomics. 2008 May;7(5):853-63. doi: 10.1074/mcp.M700251-MCP200. Epub 2007 Oct 21.
10
Capture and analysis of quantitative proteomic data.
Proteomics. 2007 Aug;7(16):2787-99. doi: 10.1002/pmic.200700127.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验