Suppr超能文献

[耳鸣声音疗法的信号检测。信号动态对声音接受度和耳鸣掩蔽的影响]

[Examination of signals for tinnitus sound therapy. Effects of signal dynamics on sound acceptance and tinnitus masking].

作者信息

Schreitmüller S, von Wedel H, Walger M, Meister H

机构信息

Jean-Uhrmacher-Institut für klinische HNO-Forschung, Universität zu Köln, Geibelstr. 29-31, 50931, Köln, Deutschland.

出版信息

HNO. 2013 Jan;61(1):38-45. doi: 10.1007/s00106-012-2642-7.

Abstract

BACKGROUND

In terms of sound acceptance and tinnitus-masking efficacy, tinnitus sound therapy appears to be more effective using dynamic natural sounds than static noise signals. The aim of this study was to systematically determine the effects of physical dynamics parameters on tinnitus masking and sound acceptance.

MATERIALS AND METHODS

Based on a dynamic model, noise signals with different dynamic properties were synthesized and used to investigate minimal masking levels (MMLs) and spontaneous sound acceptance in six tinnitus patients.

RESULTS

High signal dynamics resulted in high MMLs and low sound acceptance. In some instances, low signal dynamics gave rise to slightly lower MMLs than white noise. Despite unfavourable MMLs, natural dynamic sounds were better accepted than synthesized sounds with comparable dynamics.

CONCLUSIONS

The higher spontaneous acceptance of natural sounds as compared to white noise appears not to be due solely to physical sound properties, but rather to result primarily from psychological factors. It may be possible to improve sound acceptance in tinnitus sound therapy by using signals with low amounts of dynamics and implementing the use of natural sounds.

摘要

背景

在声音接受度和耳鸣掩蔽效果方面,耳鸣声音疗法使用动态自然声音似乎比静态噪声信号更有效。本研究的目的是系统地确定物理动力学参数对耳鸣掩蔽和声音接受度的影响。

材料与方法

基于一个动态模型,合成了具有不同动态特性的噪声信号,并用于研究6名耳鸣患者的最小掩蔽水平(MMLs)和自发声音接受度。

结果

高信号动态导致高MMLs和低声音接受度。在某些情况下,低信号动态产生的MMLs略低于白噪声。尽管MMLs不理想,但自然动态声音比具有可比动态的合成声音更易被接受。

结论

与白噪声相比,自然声音较高的自发接受度似乎并非仅归因于物理声音特性,而主要是由心理因素导致的。通过使用低动态量的信号并采用自然声音,可能会提高耳鸣声音疗法中的声音接受度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验