Suppr超能文献

全基因组标记作为数量性状基因座精确定位的协同因子。

Genomewide markers as cofactors for precision mapping of quantitative trait loci.

机构信息

Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, MN 55108, USA.

出版信息

Theor Appl Genet. 2013 Apr;126(4):999-1009. doi: 10.1007/s00122-012-2032-2. Epub 2012 Dec 28.

Abstract

In composite interval mapping of quantitative trait loci (QTL), subsets of background markers are used to account for the effects of QTL outside the marker interval being tested. Here, I propose a QTL mapping approach (called G model) that utilizes genomewide markers as cofactors. The G model involves backward elimination on a given chromosome after correcting for genomewide marker effects, calculated under a random effects model, at all the other chromosomes. I simulated a trait controlled by 15 or 30 QTL, mapping populations of N = 96, 192, and 384 recombinant inbreds, and N M = 192 and 384 evenly spaced markers. In the C model, which utilized subsets of background markers, the number of QTL detected and the number of false positives depended on the number of cofactors used, with five cofactors being too few with N = 384 and 20-40 cofactors being too many with N = 96. A window size of 0 cM for excluding cofactors maintained the number of true QTL detected while decreasing the number of false positives. The number of true QTL detected was generally higher with the G model than with the C model, and the G model led to good control of the type I error rate in simulations where the null hypothesis of no marker-QTL linkage was true. Overall, the results indicated that the G model is useful in QTL mapping because it is less subjective and has equal, if not better, performance when compared with the traditional approach of using subsets of markers to account for background QTL.

摘要

在数量性状基因座(QTL)的复合区间作图中,使用背景标记的子集来解释正在测试的标记区间之外的 QTL 的效应。在这里,我提出了一种 QTL 作图方法(称为 G 模型),该方法利用全基因组标记作为协变量。G 模型涉及在随机效应模型下,在所有其他染色体上,对给定染色体进行基于全基因组标记效应校正的回溯剔除。我模拟了由 15 或 30 个 QTL 控制的性状,作图群体为 N = 96、192 和 384 个重组近交系,以及 N M = 192 和 384 个均匀间隔的标记。在 C 模型中,利用背景标记的子集,检测到的 QTL 数量和假阳性数量取决于使用的协变量数量,对于 N = 384,使用 5 个协变量太少,而对于 N = 96,使用 20-40 个协变量太多。排除协变量的窗口大小为 0 cM 可维持检测到的真实 QTL 数量,同时减少假阳性数量。与 C 模型相比,G 模型通常可以检测到更多的真实 QTL,并且在假设不存在标记-QTL 连锁的零假设为真的模拟中,G 模型可以很好地控制 I 型错误率。总体而言,结果表明,G 模型在 QTL 作图中是有用的,因为它不那么主观,并且与使用标记子集来解释背景 QTL 的传统方法相比,具有相同甚至更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验