Suppr超能文献

研究发现,语前聋青少年的脑白质完整性发生改变:一项基于高分辨率束路径的空间统计学成像研究。

Altered white matter integrity in adolescents with prelingual deafness: a high-resolution tract-based spatial statistics imaging study.

机构信息

State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

出版信息

AJNR Am J Neuroradiol. 2013 Jun-Jul;34(6):1264-70. doi: 10.3174/ajnr.A3370. Epub 2012 Dec 28.

Abstract

BACKGROUND AND PURPOSE

Prelingual deafness is a hearing loss that occurs before language is acquired and may result in brain structural alterations. We studied microstructural WM alterations in prelingually deaf adolescents by using DTI. We hypothesized that any morphologic alterations are mainly located in the auditory association areas. Furthermore, considering that the developing brain is both more vulnerable to deprivation and more plastic than the adult brain, we speculated that the affected areas should be larger than those previously reported in adult deafness.

MATERIALS AND METHODS

Diffusion tensor images were obtained from 16 prelingually deaf adolescents (age range, 10-18 years) and 16 healthy control adolescents matched for age and sex. Both groups were compared in fractional anisotropy and radial diffusivity by tract-based spatial statistics. In addition, we examined the correlation between the structural data (FA, RD) differences and the duration of sign language use and hearing aid experience.

RESULTS

Prelingually deaf adolescents had significantly lower FA and increased RD in the bilateral superior temporal gyri, Heschl gyrus, planum polare, and the splenium of the corpus callosum. Only RD values in the right superior temporal gyrus correlated significantly and negatively (r = -0.518; P = .040) with duration of sign language use. These alterations were larger than those previously reported in adult deafness.

CONCLUSIONS

As expected, we found severe morphologic changes of decreased FA and increased RD in multiple auditory association areas and in the corpus callosum. These changes are signs of development impairments in prelingually deaf adolescents, possibly reflecting axonal loss or lack of myelination.

摘要

背景与目的

先天性耳聋是指在语言习得之前发生的听力损失,可能导致大脑结构改变。我们通过弥散张量成像(DTI)研究了先天性耳聋青少年的脑白质微观结构改变。我们假设任何形态学改变主要位于听觉联合区。此外,由于发育中的大脑比成人的大脑更容易受到剥夺和更具可塑性,我们推测受影响的区域应大于先前报道的成人耳聋中的区域。

材料与方法

对 16 名先天性耳聋青少年(年龄范围为 10-18 岁)和 16 名年龄和性别相匹配的健康青少年进行了弥散张量成像。采用基于束的空间统计学方法比较两组各向异性分数(FA)和径向弥散度(RD)的差异。此外,我们还研究了结构数据(FA、RD)差异与手语使用时间和助听器使用经验之间的相关性。

结果

先天性耳聋青少年双侧颞上回、Heschl 回、极平面和胼胝体压部的 FA 降低,RD 增加。仅右颞上回的 RD 值与手语使用时间呈显著负相关(r = -0.518;P =.040)。这些改变大于先前报道的成人耳聋中的改变。

结论

正如预期的那样,我们发现了多个听觉联合区和胼胝体的 FA 降低和 RD 增加的严重形态学改变。这些变化是先天性耳聋青少年发育障碍的标志,可能反映了轴突丢失或缺乏髓鞘形成。

相似文献

1
Altered white matter integrity in adolescents with prelingual deafness: a high-resolution tract-based spatial statistics imaging study.
AJNR Am J Neuroradiol. 2013 Jun-Jul;34(6):1264-70. doi: 10.3174/ajnr.A3370. Epub 2012 Dec 28.
2
Sensitive period for white-matter connectivity of superior temporal cortex in deaf people.
Hum Brain Mapp. 2012 Feb;33(2):349-59. doi: 10.1002/hbm.21215. Epub 2011 Mar 9.
4
Structural alterations of brain grey and white matter in early deaf adults.
Hear Res. 2014 Dec;318:1-10. doi: 10.1016/j.heares.2014.09.008. Epub 2014 Sep 28.
5
Reorganized Brain White Matter in Early- and Late-Onset Deafness With Diffusion Tensor Imaging.
Ear Hear. 2021 Jan/Feb;42(1):223-234. doi: 10.1097/AUD.0000000000000917.
6
Tract-specific analysis of white matter integrity disruption in schizophrenia.
Psychiatry Res. 2012 Feb 28;201(2):136-43. doi: 10.1016/j.pscychresns.2011.07.010. Epub 2012 Mar 6.
7
A morphometric analysis of auditory brain regions in congenitally deaf adults.
Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10049-54. doi: 10.1073/pnas.1730169100. Epub 2003 Aug 6.
8
Alterations of white matter diffusion anisotropy in early deafness.
Neuroreport. 2009 Jul 15;20(11):1032-6. doi: 10.1097/WNR.0b013e32832e0cdd.
9
Altered interhemispheric and temporal lobe white matter microstructural organization in severe chronic schizophrenia.
Neuropsychopharmacology. 2014 Mar;39(4):944-54. doi: 10.1038/npp.2013.294. Epub 2013 Oct 22.

引用本文的文献

1
Diffusion Tensor Imaging of the Auditory Pathway in Prelingual Deaf Children in Comparison to Normal Hearing Children in the 1 to 7 Years of Age Group.
Indian J Radiol Imaging. 2024 Oct 24;35(2):280-286. doi: 10.1055/s-0044-1791809. eCollection 2025 Apr.
2
Neural adaptations in short-term learning of sign language revealed by fMRI and DTI.
Sci Rep. 2025 Feb 13;15(1):5345. doi: 10.1038/s41598-024-84468-z.
3
The value of synthetic MRI in detecting the brain changes and hearing impairment of children with sensorineural hearing loss.
Front Neurosci. 2024 Jun 11;18:1365141. doi: 10.3389/fnins.2024.1365141. eCollection 2024.
4
Reduced white matter maturation in the central auditory system of children living with HIV.
Front Neuroimaging. 2024 Mar 6;3:1341607. doi: 10.3389/fnimg.2024.1341607. eCollection 2024.
5
6
Impaired body-centred sensorimotor transformations in congenitally deaf people.
Brain Commun. 2022 Jun 7;4(3):fcac148. doi: 10.1093/braincomms/fcac148. eCollection 2022.
8
The impact of mild-to-severe hearing loss on the neural dynamics serving verbal working memory processing in children.
Neuroimage Clin. 2021;30:102647. doi: 10.1016/j.nicl.2021.102647. Epub 2021 Mar 29.
9
Functional and structural brain connectivity in congenital deafness.
Brain Struct Funct. 2021 May;226(4):1323-1333. doi: 10.1007/s00429-021-02243-6. Epub 2021 Mar 19.
10
Hearing loss impacts gray and white matter across the lifespan: Systematic review, meta-analysis and meta-regression.
Neuroimage. 2021 May 1;231:117826. doi: 10.1016/j.neuroimage.2021.117826. Epub 2021 Feb 4.

本文引用的文献

1
Structural human brain networks: hot topics in diffusion tractography.
Curr Opin Neurol. 2012 Aug;25(4):375-83. doi: 10.1097/WCO.0b013e328355d544.
2
Myelination deficits in schizophrenia: evidence from diffusion tensor imaging.
Brain Struct Funct. 2013 Jan;218(1):151-6. doi: 10.1007/s00429-012-0389-2. Epub 2012 Feb 12.
4
Sensitive period for white-matter connectivity of superior temporal cortex in deaf people.
Hum Brain Mapp. 2012 Feb;33(2):349-59. doi: 10.1002/hbm.21215. Epub 2011 Mar 9.
6
Profound deafness in childhood.
N Engl J Med. 2010 Oct 7;363(15):1438-50. doi: 10.1056/NEJMra0911225.
7
Morphometric differences in the Heschl's gyrus of hearing impaired and normal hearing infants.
Cereb Cortex. 2011 May;21(5):991-8. doi: 10.1093/cercor/bhq164. Epub 2010 Sep 13.
8
The influence of a sensitive period for auditory-visual integration in children with cochlear implants.
Restor Neurol Neurosci. 2010;28(2):207-18. doi: 10.3233/RNN-2010-0525.
9
Functional specializations for music processing in the human newborn brain.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4758-63. doi: 10.1073/pnas.0909074107. Epub 2010 Feb 22.
10
Diffusion tensor imaging of the subcortical auditory tract in subjects with congenital cochlear nerve deficiency.
AJNR Am J Neuroradiol. 2009 Oct;30(9):1773-7. doi: 10.3174/ajnr.A1681. Epub 2009 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验