Suppr超能文献

铜缺乏大鼠胰腺外分泌功能降低中迷走神经的作用。

Role of the vagus in the reduced pancreatic exocrine function in copper-deficient rats.

机构信息

Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, USA.

出版信息

Am J Physiol Gastrointest Liver Physiol. 2013 Feb 15;304(4):G437-48. doi: 10.1152/ajpgi.00402.2012. Epub 2012 Dec 28.

Abstract

Copper plays an essential role in the function and development of the central nervous system and exocrine pancreas. Dietary copper limitation is known to result in noninflammatory atrophy of pancreatic acinar tissue. Our recent studies have suggested that vagal motoneurons regulate pancreatic exocrine secretion (PES) by activating selective subpopulations of neurons within vagovagal reflexive neurocircuits. We used a combination of in vivo, in vitro, and immunohistochemistry techniques in a rat model of copper deficiency to investigate the effects of a copper-deficient diet on the neural pathways controlling PES. Duodenal infusions of Ensure or casein, as well as microinjections of sulfated CCK-8, into the dorsal vagal complex resulted in an attenuated stimulation of PES in copper-deficient animals compared with controls. Immunohistochemistry of brain stem slices revealed that copper deficiency reduced the number of tyrosine hydroxylase-immunoreactive, but not neuronal nitric oxide synthase- or choline acetyltransferase-immunoreactive, neurons in the dorsal motor nucleus of the vagus (DMV). Moreover, a copper-deficient diet reduced the number of large (>11 neurons), but not small, intrapancreatic ganglia. Electrophysiological recordings showed that DMV neurons from copper-deficient rats are less responsive to CCK-8 or pancreatic polypeptide than are DMV neurons from control rats. Our results demonstrate that copper deficiency decreases efferent vagal outflow to the exocrine pancreas. These data indicate that the combined selective loss of acinar pancreatic tissue and the decreased excitability of efferent vagal neurons induce a deficit in the vagal modulation of PES.

摘要

铜在中枢神经系统和外分泌胰腺的功能和发育中起着至关重要的作用。已知饮食中铜的限制会导致胰腺腺泡组织的非炎症性萎缩。我们最近的研究表明,迷走运动神经元通过激活迷走神经反射性神经回路中选择性的神经元亚群来调节胰腺外分泌分泌(PES)。我们在铜缺乏症大鼠模型中使用了体内、体外和免疫组织化学技术的组合,研究了铜缺乏饮食对控制 PES 的神经通路的影响。十二指肠输注 Ensure 或酪蛋白,以及将硫酸化 CCK-8 微注射到迷走神经复合体的背侧,与对照组相比,铜缺乏动物的 PES 刺激减弱。脑干切片的免疫组织化学显示,铜缺乏减少了背侧迷走神经运动核(DMV)中酪氨酸羟化酶免疫反应性神经元的数量,但不减少神经元一氧化氮合酶或胆碱乙酰转移酶免疫反应性神经元的数量。此外,铜缺乏饮食减少了大(>11 个神经元)而不是小的胰腺内神经节的数量。电生理记录显示,与来自对照大鼠的 DMV 神经元相比,来自铜缺乏大鼠的 DMV 神经元对 CCK-8 或胰多肽的反应性降低。我们的结果表明,铜缺乏症降低了对外分泌胰腺的传出迷走神经流出。这些数据表明,腺泡胰腺组织的综合选择性丧失和传出迷走神经神经元兴奋性降低导致了 PES 的迷走神经调节缺陷。

相似文献

1
Role of the vagus in the reduced pancreatic exocrine function in copper-deficient rats.
Am J Physiol Gastrointest Liver Physiol. 2013 Feb 15;304(4):G437-48. doi: 10.1152/ajpgi.00402.2012. Epub 2012 Dec 28.
2
Cholecystokinin-8s excites identified rat pancreatic-projecting vagal motoneurons.
Am J Physiol Gastrointest Liver Physiol. 2007 Aug;293(2):G484-92. doi: 10.1152/ajpgi.00116.2007. Epub 2007 Jun 14.
3
Glucagon-like peptide-1 excites pancreas-projecting preganglionic vagal motoneurons.
Am J Physiol Gastrointest Liver Physiol. 2007 Jun;292(6):G1474-82. doi: 10.1152/ajpgi.00562.2006. Epub 2007 Feb 22.
4
Vagally mediated, nonparacrine effects of cholecystokinin-8s on rat pancreatic exocrine secretion.
Am J Physiol Gastrointest Liver Physiol. 2007 Aug;293(2):G493-500. doi: 10.1152/ajpgi.00118.2007. Epub 2007 Jun 14.
5
High-affinity CCK-A receptors on the vagus nerve mediate CCK-stimulated pancreatic secretion in rats.
Am J Physiol. 1997 Sep;273(3 Pt 1):G679-85. doi: 10.1152/ajpgi.1997.273.3.G679.
6
Hypothalamus-brain stem circuitry responsible for vagal efferent signaling to the pancreas evoked by hypoglycemia in rat.
J Neurophysiol. 2004 Apr;91(4):1734-47. doi: 10.1152/jn.00791.2003. Epub 2003 Nov 26.
7
Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity.
J Physiol. 2015 Jan 1;593(1):285-303. doi: 10.1113/jphysiol.2014.282806. Epub 2014 Dec 2.
8
Effects of pancreatic polypeptide on pancreas-projecting rat dorsal motor nucleus of the vagus neurons.
Am J Physiol Gastrointest Liver Physiol. 2005 Aug;289(2):G209-19. doi: 10.1152/ajpgi.00560.2004. Epub 2005 Apr 7.
9
Dorsal vagal preganglionic neurons: differential responses to CCK1 and 5-HT3 receptor stimulation.
Auton Neurosci. 2010 Aug 25;156(1-2):36-43. doi: 10.1016/j.autneu.2010.03.001. Epub 2010 Mar 26.
10
Pancreatic insulin and exocrine secretion are under the modulatory control of distinct subpopulations of vagal motoneurones in the rat.
J Physiol. 2012 Aug 1;590(15):3611-22. doi: 10.1113/jphysiol.2012.234955. Epub 2012 Jun 18.

引用本文的文献

1
Roles of the nervous system in pancreatic cancer.
Ann Gastroenterol Surg. 2021 Mar 29;5(5):623-633. doi: 10.1002/ags3.12459. eCollection 2021 Sep.
2
Reduced Pancreatic Exocrine Function and Organellar Disarray in a Canine Model of Acute Pancreatitis.
PLoS One. 2016 Feb 19;11(2):e0148458. doi: 10.1371/journal.pone.0148458. eCollection 2016.
3
Neural plasticity in pancreatitis and pancreatic cancer.
Nat Rev Gastroenterol Hepatol. 2015 Nov;12(11):649-59. doi: 10.1038/nrgastro.2015.166. Epub 2015 Oct 13.
5
Role of metabotropic glutamate receptors in the regulation of pancreatic functions.
Biochem Pharmacol. 2014 Feb 15;87(4):535-42. doi: 10.1016/j.bcp.2013.12.001. Epub 2013 Dec 16.

本文引用的文献

1
Pancreatic insulin and exocrine secretion are under the modulatory control of distinct subpopulations of vagal motoneurones in the rat.
J Physiol. 2012 Aug 1;590(15):3611-22. doi: 10.1113/jphysiol.2012.234955. Epub 2012 Jun 18.
2
Oxytocin-immunoreactive innervation of identified neurons in the rat dorsal vagal complex.
Neurogastroenterol Motil. 2012 Mar;24(3):e136-46. doi: 10.1111/j.1365-2982.2011.01851.x. Epub 2011 Dec 21.
3
Abnormal intestinal function related to hypocupremia in a rodent model.
Neurogastroenterol Motil. 2012 Mar;24(3):283-7, e112. doi: 10.1111/j.1365-2982.2011.01849.x. Epub 2011 Dec 21.
4
Effects of nitric oxide synthase blockade on dorsal vagal stimulation-induced pancreatic insulin secretion.
Brain Res. 2011 Jun 7;1394:62-70. doi: 10.1016/j.brainres.2011.04.015. Epub 2011 Apr 16.
5
Plasticity of vagal brainstem circuits in the control of gastric function.
Neurogastroenterol Motil. 2010 Nov;22(11):1154-63. doi: 10.1111/j.1365-2982.2010.01592.x. Epub 2010 Aug 29.
6
Menkes disease.
Eur J Hum Genet. 2010 May;18(5):511-8. doi: 10.1038/ejhg.2009.187. Epub 2009 Nov 4.
7
Copper deficiency after gastric bypass surgery.
Obesity (Silver Spring). 2009 Nov;17(11):1980-1. doi: 10.1038/oby.2009.237.
8
Acquired copper deficiency: a potentially serious and preventable complication following gastric bypass surgery.
Obesity (Silver Spring). 2009 Apr;17(4):827-31. doi: 10.1038/oby.2008.614. Epub 2009 Jan 15.
9
Activation of cholecystokinin (CCK 1) and serotonin (5-HT 3) receptors increases the discharge of pancreatic vagal afferents.
Eur J Pharmacol. 2008 Dec 28;601(1-3):198-206. doi: 10.1016/j.ejphar.2008.11.007. Epub 2008 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验