Suppr超能文献

利用结构和热力学基序预测反义寡核苷酸。

Prediction of antisense oligonucleotides using structural and thermodynamic motifs.

作者信息

Anusha Abdul Rahiman, Chandra Vinod

机构信息

Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram - 695581, India.

出版信息

Bioinformation. 2012;8(23):1162-6. doi: 10.6026/97320630081162. Epub 2012 Nov 23.

Abstract

Specific gene expression regulation strategy using antisense oligonucleotides occupy significant space in recent clinical trials. The therapeutical potential of oligos lies in the identification and prediction of accurate oligonucleotides against specific target mRNA. In this work we present a computational method that is built on Artificial Neural Network (ANN) which could recognize and predict oligonucleotides effectively. In this study first we identified 11 major parameters associated with oligo:mRNA duplex linkage. A feed forward multilayer perceptron ANN classifier is trained with a set of experimentally proven feature vectors. The classifier gives an exact prediction of the input sequences under 2 classes - oligo or non-oligo. On validation, our tool showed comparatively significant accuracy of 92.48% with 91.7% sensitivity and 92.09% specificity. This study was also able to reveal the relative impact of individual parameters we considered on antisense oligonucleotide predictions.

摘要

使用反义寡核苷酸的特定基因表达调控策略在近期的临床试验中占据了重要地位。寡核苷酸的治疗潜力在于识别和预测针对特定靶标mRNA的精确寡核苷酸。在这项工作中,我们提出了一种基于人工神经网络(ANN)构建的计算方法,该方法可以有效地识别和预测寡核苷酸。在本研究中,我们首先确定了与寡核苷酸:mRNA双链体连接相关的11个主要参数。使用一组经过实验验证的特征向量训练前馈多层感知器人工神经网络分类器。该分类器对两类输入序列(寡核苷酸或非寡核苷酸)进行准确预测。经过验证,我们的工具显示出相对显著的准确率,为92.48%,灵敏度为91.7%,特异性为92.09%。本研究还能够揭示我们所考虑的各个参数对反义寡核苷酸预测的相对影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/337f/3530885/854eb894744d/97320630081162F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验