Suppr超能文献

初等元胞自动机的全计算相关拓扑动力学分类。

A full computation-relevant topological dynamics classification of elementary cellular automata.

机构信息

Institute of Neuroinformatics, ETH and University of Zurich, 8057 Zurich, Switzerland.

出版信息

Chaos. 2012 Dec;22(4):043143. doi: 10.1063/1.4771662.

Abstract

Cellular automata are both computational and dynamical systems. We give a complete classification of the dynamic behaviour of elementary cellular automata (ECA) in terms of fundamental dynamic system notions such as sensitivity and chaoticity. The "complex" ECA emerge to be sensitive, but not chaotic and not eventually weakly periodic. Based on this classification, we conjecture that elementary cellular automata capable of carrying out complex computations, such as needed for Turing-universality, are at the "edge of chaos."

摘要

元胞自动机既是计算系统也是动力系统。我们基于基本动力系统概念,如敏感性和混沌性,对基本元胞自动机(ECA)的动态行为进行了全面分类。“复杂”的 ECA 是敏感的,但不是混沌的,也不是最终的弱周期性的。基于这种分类,我们推测,能够进行复杂计算的基本元胞自动机,如图灵通用性所需的计算,处于“混沌边缘”。

相似文献

2
Chaos of elementary cellular automata rule 42 of Wolfram's class II.
Chaos. 2009 Mar;19(1):013140. doi: 10.1063/1.3099610.
3
Computational Power of Asynchronously Tuned Automata Enhancing the Unfolded Edge of Chaos.
Entropy (Basel). 2021 Oct 20;23(11):1376. doi: 10.3390/e23111376.
5
Real-time computation at the edge of chaos in recurrent neural networks.
Neural Comput. 2004 Jul;16(7):1413-36. doi: 10.1162/089976604323057443.
6
Chaos computing in terms of periodic orbits.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 2):036207. doi: 10.1103/PhysRevE.84.036207. Epub 2011 Sep 12.
7
Nonlinear transient computation as a potential "kernel trick" in cortical processing.
Biosystems. 2008 Oct-Nov;94(1-2):55-9. doi: 10.1016/j.biosystems.2008.05.010. Epub 2008 Jun 20.
8
On the topological sensitivity of cellular automata.
Chaos. 2011 Jun;21(2):023108. doi: 10.1063/1.3535581.
9
Self-organized perturbations enhance class IV behavior and 1/f power spectrum in elementary cellular automata.
Biosystems. 2011 Sep;105(3):216-24. doi: 10.1016/j.biosystems.2011.05.002. Epub 2011 May 11.
10
Self-referential basis of undecidable dynamics: From the Liar paradox and the halting problem to the edge of chaos.
Phys Life Rev. 2019 Dec;31:134-156. doi: 10.1016/j.plrev.2018.12.003. Epub 2019 Jan 8.

引用本文的文献

1
Distributed information encoding and decoding using self-organized spatial patterns.
Patterns (N Y). 2022 Sep 23;3(10):100590. doi: 10.1016/j.patter.2022.100590. eCollection 2022 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验