Bauer Sebastian, Berkels Benjamin, Ettl Svenja, Arold Oliver, Hornegger Joachim, Rumpf Martin
Pattern Recognition Lab, Dept. of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):414-21. doi: 10.1007/978-3-642-33415-3_51.
To manage respiratory motion in image-guided interventions a novel sparse-to-dense registration approach is presented. We apply an emerging laser-based active triangulation (AT) sensor that delivers sparse but highly accurate 3-D measurements in real-time. These sparse position measurements are registered with a dense reference surface extracted from planning data. Thereby a dense displacement field is reconstructed which describes the 4-D deformation of the complete patient body surface and recovers a multi-dimensional respiratory signal for application in respiratory motion management. The method is validated on real data from an AT prototype and synthetic data sampled from dense surface scans acquired with a structured light scanner. In a study on 16 subjects, the proposed algorithm achieved a mean reconstruction accuracy of +/- 0.22 mm w.r.t. ground truth data.
为了在图像引导介入治疗中管理呼吸运动,提出了一种新颖的从稀疏到密集的配准方法。我们应用了一种新兴的基于激光的主动三角测量(AT)传感器,该传感器可实时提供稀疏但高度准确的三维测量值。这些稀疏位置测量值与从规划数据中提取的密集参考表面进行配准。由此重建一个密集的位移场,该位移场描述了整个患者体表的四维变形,并恢复多维呼吸信号以用于呼吸运动管理。该方法在来自AT原型的真实数据以及从使用结构光扫描仪获取的密集表面扫描中采样的合成数据上得到了验证。在一项针对16名受试者的研究中,相对于地面真值数据,所提出的算法实现了±0.22毫米的平均重建精度。