Suppr超能文献

使用主动激光三角测量法对密集4D表面运动场进行无标记重建以用于呼吸运动管理。

Marker-less reconstruction of dense 4-D surface motion fields using active laser triangulation for respiratory motion management.

作者信息

Bauer Sebastian, Berkels Benjamin, Ettl Svenja, Arold Oliver, Hornegger Joachim, Rumpf Martin

机构信息

Pattern Recognition Lab, Dept. of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 1):414-21. doi: 10.1007/978-3-642-33415-3_51.

Abstract

To manage respiratory motion in image-guided interventions a novel sparse-to-dense registration approach is presented. We apply an emerging laser-based active triangulation (AT) sensor that delivers sparse but highly accurate 3-D measurements in real-time. These sparse position measurements are registered with a dense reference surface extracted from planning data. Thereby a dense displacement field is reconstructed which describes the 4-D deformation of the complete patient body surface and recovers a multi-dimensional respiratory signal for application in respiratory motion management. The method is validated on real data from an AT prototype and synthetic data sampled from dense surface scans acquired with a structured light scanner. In a study on 16 subjects, the proposed algorithm achieved a mean reconstruction accuracy of +/- 0.22 mm w.r.t. ground truth data.

摘要

为了在图像引导介入治疗中管理呼吸运动,提出了一种新颖的从稀疏到密集的配准方法。我们应用了一种新兴的基于激光的主动三角测量(AT)传感器,该传感器可实时提供稀疏但高度准确的三维测量值。这些稀疏位置测量值与从规划数据中提取的密集参考表面进行配准。由此重建一个密集的位移场,该位移场描述了整个患者体表的四维变形,并恢复多维呼吸信号以用于呼吸运动管理。该方法在来自AT原型的真实数据以及从使用结构光扫描仪获取的密集表面扫描中采样的合成数据上得到了验证。在一项针对16名受试者的研究中,相对于地面真值数据,所提出的算法实现了±0.22毫米的平均重建精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验