Suppr超能文献

通过表面标测定位稀疏透壁兴奋刺激

Localization of sparse transmural excitation stimuli from surface mapping.

作者信息

Xu Jingjia, Dehaghani Azar Rahimi, Gao Fei, Wang Linwei

机构信息

Computational Biomedicine Laboratory, Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 1):675-82. doi: 10.1007/978-3-642-33415-3_83.

Abstract

As in-silico 3D electrophysiological (EP) models start to play an essential role in revealing transmural EP characteristics and diseased substrates in individual hearts, there arises a critical challenge to properly initialize these models, i.e., determine the location of excitation stimuli without a trial-and-error process. In this paper, we present a novel method to localize transmural stimuli based on their spatial sparsity using surface mapping data. In order to overcome the mathematical ill-posedness caused by the limited measurement data, a neighborhood-smoothness constraint is used to first obtain a low-resolution estimation of sparse solution. This is then used to initialize an iterative, re-weighted minimum-norm regularization to enforce a sparse solution and thereby overcome the physical ill-posedness of the electromagnetic inverse problem. Phantom experiments are performed on a human heart-torso model to evaluate this method in localizing excitation stimuli at different regions and depths within the ventricles, as well as to test its feasibility in differentiating multiple remotely or close distributed stimuli. Real-data experiments are performed on a healthy and an infarcted porcine heart, where activation isochronous simulated with the reconstructed stimuli are significantly closer to the catheterized mapping data than other stimuli configurations. This method has the potential to benefit the current research in subject-specific EP modeling as well as to facilitate clinical decisions involving device pacing and ectopic foci.

摘要

随着计算机模拟三维电生理(EP)模型开始在揭示个体心脏的跨壁电生理特征和病变基质方面发挥重要作用,正确初始化这些模型出现了一个关键挑战,即无需反复试验过程就能确定兴奋刺激的位置。在本文中,我们提出了一种基于表面映射数据利用跨壁刺激的空间稀疏性来定位它们的新方法。为了克服有限测量数据导致的数学不适定性,使用邻域平滑约束首先获得稀疏解的低分辨率估计。然后将其用于初始化迭代的、重新加权的最小范数正则化,以强制得到稀疏解,从而克服电磁逆问题的物理不适定性。在人体心脏 - 躯干模型上进行了虚拟实验,以评估该方法在定位心室不同区域和深度的兴奋刺激方面的效果,以及测试其区分多个远距离或近距离分布刺激的可行性。在健康和梗死的猪心脏上进行了实际数据实验,其中用重建刺激模拟的激活等时线比其他刺激配置更接近导管标测数据。该方法有可能有益于当前针对个体的电生理建模研究,并有助于涉及设备起搏和异位病灶的临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验