Reisert Marco, Skibbe Henrik, Kiselev Valerij G
Medical Physics, University Medical Center Freiburg, Breisacher Str. 60a, 79106 Freiburg, Germany.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):297-304. doi: 10.1007/978-3-642-33418-4_37.
Diffusion-sensitized magnetic resonance imaging provides information about the fibrous structure of the human brain. However, this information is not sufficient to reconstruct the underlying fiber network, because the nature of diffusion provides only conditional fiber densities. That is, it is possible to infer the percentage of bundles that pass a voxel with a certain direction, but the absolute number of fibers is inaccessible. In this work we propose a conservation equation for tensor fields that can infer this number up to a factor. Simulations on synthetic phantoms show that the approach is able to derive the densities correctly for various configurations. In-vivo results on 20 healthy volunteers are plausible and consistent, while a rigorous evaluation is difficult, because conclusive data from both MRI and histology remain elusive even on the most studied brain structures.
扩散敏感磁共振成像可提供有关人类大脑纤维结构的信息。然而,这些信息不足以重建潜在的纤维网络,因为扩散的本质仅提供条件纤维密度。也就是说,可以推断出具有特定方向通过体素的束的百分比,但纤维的绝对数量是无法获取的。在这项工作中,我们提出了一个张量场守恒方程,该方程可以推断出这个数量,误差在一个系数范围内。对合成体模的模拟表明,该方法能够针对各种配置正确推导出密度。对20名健康志愿者的体内结果是合理且一致的,不过严格评估很困难,因为即使是在研究最多的脑结构上,来自MRI和组织学的确凿数据仍然难以获得。