Lekadir Karim, Frangi Alejandro F, Yang Guang-Zhong
Center for Computational Imaging & Simulation Technologies in Biomedicine, Universitat Pompeu Fabra and CIBER-BBN, Barcelona, Spain.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):99-106. doi: 10.1007/978-3-642-33454-2_13.
This paper presents a new approach for the robust alignment and interpretation of 3D anatomical structures with large and localized shape differences. In such situations, existing techniques based on the well-known Procrustes analysis can be significantly affected due to the introduced non-Gaussian distribution of the residuals. In the proposed technique, influential points that induce large dissimilarities are identified and displaced with the aim to obtain an intermediate template with an improved distribution of the residuals. The key element of the algorithm is the use of pose invariant shape variables to robustly guide both the influential point detection and displacement steps. The intermediate template is then used as the basis for the estimation of the final pose parameters between the source and destination shapes, enabling to effectively highlight the regional differences of interest. The validation using synthetic and real datasets of different morphologies demonstrates robustness up-to 50% regional differences and potential for shape classification.
本文提出了一种新方法,用于对具有大的局部形状差异的三维解剖结构进行稳健对齐和解释。在这种情况下,基于著名的普罗克汝斯分析的现有技术可能会因引入的残差非高斯分布而受到显著影响。在所提出的技术中,识别出引起大差异的影响点并进行位移,目的是获得一个残差分布得到改善的中间模板。该算法的关键要素是使用姿态不变形状变量来稳健地指导影响点检测和位移步骤。然后,将中间模板用作估计源形状和目标形状之间最终姿态参数的基础,从而能够有效地突出感兴趣的区域差异。使用不同形态的合成数据集和真实数据集进行的验证表明,该方法对于高达50%的区域差异具有稳健性,并且具有形状分类的潜力。