Unit on Neural Systems and Behavior, Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan.
J Neurosci. 2013 Jan 9;33(2):697-708. doi: 10.1523/JNEUROSCI.4018-12.2013.
Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.
运动性抽动,是妥瑞氏综合征(TS)的主要症状,其被认为源于脑-基底神经节回路的异常。然而,先前对 TS 的非侵入性神经影像学研究已经确定了小脑的强烈激活。迄今为止,小脑激活的电生理特性及其在基底神经节介导的抽动表达中的作用仍然未知。我们使用运动性抽动/TS 的药理学猴子模型,在小脑、基底神经节和初级运动皮层进行了多地点、多电极的单个神经元活动和局部场电位记录。在感觉运动纹状体中微注射荷包牡丹碱后,周期性抽动主要发生在口腔区域,并且相当数量的小脑神经元表现出与抽动发作相关的活动的阶段性变化。具体而言,记录的小脑皮质神经元中有 64%表现出活动增加,而 85%的齿状核神经元表现出兴奋性、抑制性或多相反应。关键的是,小脑皮质神经元和兴奋性齿状核神经元的异常放电大多先于行为抽动发作,表明其起源于中枢。小脑和初级运动皮层中病理性活动的潜伏期有很大的重叠,这表明异常信号可能沿着从基底神经节到这些结构的不同途径传播。此外,抽动运动的发生与小脑和初级运动皮层的局部场电位尖峰最密切相关,这意味着这些结构可能作为释放明显抽动运动的门控。这些发现表明,基底神经节中产生抽动的网络延伸超出了经典的脑-基底神经节回路,导致包括小脑回路在内的全局网络节律失调。