Suppr超能文献

纹状体抑制解除后,基底神经节-小脑网络的全局节律失调是运动性抽动的基础。

Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition.

机构信息

Unit on Neural Systems and Behavior, Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan.

出版信息

J Neurosci. 2013 Jan 9;33(2):697-708. doi: 10.1523/JNEUROSCI.4018-12.2013.

Abstract

Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.

摘要

运动性抽动,是妥瑞氏综合征(TS)的主要症状,其被认为源于脑-基底神经节回路的异常。然而,先前对 TS 的非侵入性神经影像学研究已经确定了小脑的强烈激活。迄今为止,小脑激活的电生理特性及其在基底神经节介导的抽动表达中的作用仍然未知。我们使用运动性抽动/TS 的药理学猴子模型,在小脑、基底神经节和初级运动皮层进行了多地点、多电极的单个神经元活动和局部场电位记录。在感觉运动纹状体中微注射荷包牡丹碱后,周期性抽动主要发生在口腔区域,并且相当数量的小脑神经元表现出与抽动发作相关的活动的阶段性变化。具体而言,记录的小脑皮质神经元中有 64%表现出活动增加,而 85%的齿状核神经元表现出兴奋性、抑制性或多相反应。关键的是,小脑皮质神经元和兴奋性齿状核神经元的异常放电大多先于行为抽动发作,表明其起源于中枢。小脑和初级运动皮层中病理性活动的潜伏期有很大的重叠,这表明异常信号可能沿着从基底神经节到这些结构的不同途径传播。此外,抽动运动的发生与小脑和初级运动皮层的局部场电位尖峰最密切相关,这意味着这些结构可能作为释放明显抽动运动的门控。这些发现表明,基底神经节中产生抽动的网络延伸超出了经典的脑-基底神经节回路,导致包括小脑回路在内的全局网络节律失调。

相似文献

2
The neurophysiological correlates of motor tics following focal striatal disinhibition.
Brain. 2009 Aug;132(Pt 8):2125-38. doi: 10.1093/brain/awp142. Epub 2009 Jun 8.
3
Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome.
PLoS Comput Biol. 2017 Mar 30;13(3):e1005395. doi: 10.1371/journal.pcbi.1005395. eCollection 2017 Mar.
4
Corticostriatal Divergent Function in Determining the Temporal and Spatial Properties of Motor Tics.
J Neurosci. 2015 Dec 16;35(50):16340-51. doi: 10.1523/JNEUROSCI.2770-15.2015.
6
Spatial and temporal properties of tic-related neuronal activity in the cortico-basal ganglia loop.
J Neurosci. 2011 Jun 15;31(24):8713-21. doi: 10.1523/JNEUROSCI.0195-11.2011.
8
Tic disorders: what happens in the basal ganglia?
Neuroscientist. 2013 Feb;19(1):101-8. doi: 10.1177/1073858412444466. Epub 2012 May 16.
9
Motor tics evoked by striatal disinhibition in the rat.
Front Syst Neurosci. 2013 Sep 18;7:50. doi: 10.3389/fnsys.2013.00050. eCollection 2013.
10
Corticostriatal interactions in the generation of tic-like behaviors after local striatal disinhibition.
Exp Neurol. 2015 Mar;265:122-8. doi: 10.1016/j.expneurol.2015.01.001. Epub 2015 Jan 15.

引用本文的文献

1
Increased sensorimotor noise in Tourette syndrome.
Brain Commun. 2025 Jun 18;7(4):fcaf247. doi: 10.1093/braincomms/fcaf247. eCollection 2025.
2
Simple and Complex Phonic Tics in Tourette Syndrome.
Brain Sci. 2025 Jun 8;15(6):620. doi: 10.3390/brainsci15060620.
3
Multi-target combination treatment with rTMS and tDCS for Tourette syndrome: a case report.
Front Hum Neurosci. 2025 Jan 7;18:1441019. doi: 10.3389/fnhum.2024.1441019. eCollection 2024.
4
Randomized Controlled Trial of Transcranial Direct Current Stimulation over the Supplementary Motor Area in Tourette Syndrome.
Mov Disord Clin Pract. 2025 Mar;12(3):313-324. doi: 10.1002/mdc3.14285. Epub 2024 Nov 29.
5
Vitamin D3 improves iminodipropionitrile-induced tic-like behavior in rats through regulation of GDNF/c-Ret signaling activity.
Eur Child Adolesc Psychiatry. 2024 Sep;33(9):3189-3201. doi: 10.1007/s00787-024-02376-z. Epub 2024 Feb 23.
6
An Update on the Diagnosis and Management of Tic Disorders.
Ann Indian Acad Neurol. 2023 Nov-Dec;26(6):858-870. doi: 10.4103/aian.aian_724_23. Epub 2023 Nov 29.
8
The intralaminar thalamus: a review of its role as a target in functional neurosurgery.
Brain Commun. 2023 Feb 2;5(3):fcad003. doi: 10.1093/braincomms/fcad003. eCollection 2023.
9
Tics and Emotions.
Brain Sci. 2022 Feb 10;12(2):242. doi: 10.3390/brainsci12020242.
10
Enhanced habit formation in Tourette patients explained by shortcut modulation in a hierarchical cortico-basal ganglia model.
Brain Struct Funct. 2022 Apr;227(3):1031-1050. doi: 10.1007/s00429-021-02446-x. Epub 2022 Feb 3.

本文引用的文献

1
Widespread abnormality of the γ-aminobutyric acid-ergic system in Tourette syndrome.
Brain. 2012 Jun;135(Pt 6):1926-36. doi: 10.1093/brain/aws104. Epub 2012 May 10.
3
Spatial and temporal properties of tic-related neuronal activity in the cortico-basal ganglia loop.
J Neurosci. 2011 Jun 15;31(24):8713-21. doi: 10.1523/JNEUROSCI.0195-11.2011.
4
Cerebellothalamocortical pathway abnormalities in torsinA DYT1 knock-in mice.
Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6638-43. doi: 10.1073/pnas.1016445108. Epub 2011 Apr 4.
5
Abnormal metabolic brain networks in Tourette syndrome.
Neurology. 2011 Mar 15;76(11):944-52. doi: 10.1212/WNL.0b013e3182104106. Epub 2011 Feb 9.
6
The neural substrates of rapid-onset Dystonia-Parkinsonism.
Nat Neurosci. 2011 Mar;14(3):357-65. doi: 10.1038/nn.2753. Epub 2011 Feb 6.
7
The cerebellum and basal ganglia are interconnected.
Neuropsychol Rev. 2010 Sep;20(3):261-70. doi: 10.1007/s11065-010-9143-9. Epub 2010 Sep 3.
8
Cerebellar morphology in Tourette syndrome and obsessive-compulsive disorder.
Ann Neurol. 2010 Apr;67(4):479-87. doi: 10.1002/ana.21918.
9
The basal ganglia communicate with the cerebellum.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8452-6. doi: 10.1073/pnas.1000496107. Epub 2010 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验