Suppr超能文献

原子级分辨染料敏化太阳能电池中的染料再生。

Atomic level resolution of dye regeneration in the dye-sensitized solar cell.

机构信息

Department of Chemistry and Centre for Advanced Solar Materials, University of Calgary, 2500 University Drive Northwest, Calgary T2N 1N4, Canada.

出版信息

J Am Chem Soc. 2013 Feb 6;135(5):1961-71. doi: 10.1021/ja311640f. Epub 2013 Jan 29.

Abstract

Two donor-acceptor organic dyes have been synthesized that differ only by a two-heteroatom change from oxygen to sulfur within the donor unit. The two dyes, (E)-3-(5-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)thiophen-2-yl)-2-cyanoprop-2-enoic acid (Dye-O) and (E)-3-(5-(4-(bis(4-(hexylthio)phenyl)amino)phenyl)thiophen-2-yl)-2-cyanoprop-2-enoic acid) (Dye-S), were tested in solar cell devices employing both I(3)(-)/I(-)-based and Co(bpy)(3) redox mediators. Power conversion efficiencies over 6% under simulated AM 1.5 illumination (1 Sun) were achieved in both electrolytes. Despite similar optical and redox properties for the two dyes, a consistently higher open-circuit voltage (V(oc)) was measured for Dye-S relative to Dye-O. The improved efficiency observed with Dye-S in an iodide redox mediator is against the commonly held view that sulfur atoms promote charge recombination attributed to inner-sphere interactions. Detailed mechanistic studies revealed that this is a consequence of a 25-fold enhancement of the regeneration rate constant that enhances the regeneration yield under open circuit conditions. The data show that a high short circuit photocurrent does not imply optimal regeneration efficiency as is often assumed.

摘要

两种供体-受体有机染料已经被合成,它们仅在供体单元中通过两个杂原子从氧到硫的变化而不同。这两种染料,(E)-3-(5-(4-(双(4-(己氧基)苯基)氨基)苯基)噻吩-2-基)-2-氰基-2-烯酸(染料-O)和(E)-3-(5-(4-(双(4-(己基硫基)苯基)氨基)苯基)噻吩-2-基)-2-氰基-2-烯酸)(染料-S),在使用 I(3)(-)/I(-)-基和[Co(bpy)(3)](3 + /2 +)氧化还原介体的太阳能电池器件中进行了测试。在两种电解质中,在模拟 AM 1.5 照明(1 太阳)下,功率转换效率超过 6%。尽管两种染料具有相似的光学和氧化还原性质,但相对于染料-O,染料-S 的开路电压(V(oc))始终更高。在碘化物氧化还原介体中,观察到染料-S 的效率提高与通常认为的硫原子促进电荷复合归因于内球相互作用的观点相悖。详细的机理研究表明,这是由于再生速率常数提高了 25 倍,从而增强了开路条件下的再生产率。数据表明,高短路光电流并不意味着如通常假设的那样具有最佳的再生效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验