Suppr超能文献

模拟鼻中隔穿孔引起的鼻腔生理变化。

Modeling nasal physiology changes due to septal perforations.

机构信息

Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.

出版信息

Otolaryngol Head Neck Surg. 2013 Mar;148(3):513-8. doi: 10.1177/0194599812472881. Epub 2013 Jan 11.

Abstract

OBJECTIVE

To use computational fluid dynamics (CFD) technology to help providers understand (1) how septal perforations may alter nasal physiology and (2) how these alterations are influenced by perforation size and location.

STUDY DESIGN

Computer simulation study.

SETTING

Facial plastic and reconstructive surgery clinic.

SUBJECTS AND METHODS

With the aid of medical imaging and modeling software, septal perforations of 1 and 2 cm in anterior, posterior, and superior locations were virtually created in a nasal cavity digital model. The CFD techniques were used to analyze airflow, nasal resistance, air conditioning, and wall shear stress.

RESULTS

Bilateral nasal resistance was not significantly altered by a septal perforation. Airflow allocation changed, with more air flowing through the lower-resistance nasal cavity. This effect was greater for anterior and posterior perforations than for the superior location. At the perforation sites, there was less localized heat and moisture flux and wall shear stress in superior perforations compared with those in anterior or posterior locations. For anterior perforations, a larger size produced higher wall shear and velocity, whereas in posterior perforations, a smaller size produced higher wall shear and velocity.

CONCLUSION

Septal perforations may alter nasal physiology. In the subject studied, airflow allocation to each side was changed as air was shunted through the perforation to the lower-resistance nasal cavity. Anterior and posterior perforations caused larger effects than those in a superior location. Increasing the size of anterior perforations and decreasing the size of posterior perforations enhanced alterations in wall shear and velocity at the perforation.

摘要

目的

利用计算流体动力学(CFD)技术帮助医务人员了解(1)鼻中隔穿孔如何改变鼻腔生理功能,以及(2)这些变化如何受到穿孔大小和位置的影响。

研究设计

计算机模拟研究。

设置

面部整形和重建外科诊所。

受试者和方法

借助医学成像和建模软件,在鼻腔数字模型中虚拟创建了 1 厘米和 2 厘米的前、后和上部位的鼻中隔穿孔。使用 CFD 技术分析气流、鼻腔阻力、空气调节和壁面剪切应力。

结果

双侧鼻腔阻力不受鼻中隔穿孔的显著影响。气流分配发生变化,更多的空气通过阻力较低的鼻腔流动。前、后穿孔的这种影响大于上穿孔。在上穿孔部位,与前或后穿孔相比,局部热量和水分通量以及壁面剪切应力较小。对于前穿孔,较大的尺寸会产生更高的壁面剪切和速度,而在后穿孔中,较小的尺寸会产生更高的壁面剪切和速度。

结论

鼻中隔穿孔可能会改变鼻腔生理功能。在研究的对象中,空气通过穿孔分流到阻力较低的鼻腔,导致两侧的气流分配发生变化。前、后穿孔比上穿孔的影响更大。增大前穿孔的尺寸和减小后穿孔的尺寸会增强穿孔处的壁面剪切和速度变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1854/3827982/6cf203e2fcc2/nihms520954f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验