Suppr超能文献

环聚合物在 theta 条件下的拓扑约束通过蒙特卡罗模拟研究。

Topological constraint in ring polymers under theta conditions studied by Monte Carlo simulation.

机构信息

Computing Research Center, High Energy Accelerator Research Organization (KEK), Oho 1, Tsukuba, Ibaraki 305-0801, Japan.

出版信息

J Chem Phys. 2013 Jan 14;138(2):024902. doi: 10.1063/1.4773822.

Abstract

We studied equilibrium conformations of trivial-, 3(1)-, and 5(1)-knotted ring polymers together with a linear counterpart over the wide range of segment numbers, N, from 32 up through 2048 using a Monte Carlo simulation to obtain the dependence of the radius of gyration of these simulated polymer chains, R(g), on the number of segments, N. The polymer chains treated in this study are composed of beads and bonds placed on a face-centered-cubic lattice respecting the excluded volume. The Flory's critical exponent, ν, for a linear polymer is 1/2 at the θ-temperature, where the excluded volume is screened by the attractive force generated among polymer segments. The trajectories of linear polymers at the θ-condition were confirmed to be described by the Gaussian chain, while the ν values for trivial-, 3(1)-, and 5(1)-knots at the θ-temperature of a linear polymer are larger than that for a linear chain. This ν value increase is due to the constraint of preserving ring topology because the polymer chains dealt with in this study cannot cross themselves even though they are at the θ-condition. The expansion parameter, β, where N-dependence vanishes by the definition, for trivial-, 3(1)-, and 5(1)-knotted ring polymers is obtained at the condition of ν = 1/2. It has been found that β decreases with increasing the degree of the topological constraint in the order of trivial (0.526), 3(1) (0.422), and 5(1) knot (0.354). Since the reference β value for a random knot is 0.5, the trivial ring polymer is swollen at ν = 1/2 and the other knotted ring polymers are squeezed.

摘要

我们使用蒙特卡罗模拟研究了平凡、3(1)-和 5(1)-纽结环聚合物与线性聚合物的平衡构象,在广泛的链段数 N 范围内,从 32 到 2048,以获得这些模拟聚合物链的旋转半径 R(g)对链段数 N 的依赖关系。在这项研究中,聚合物链由置于面心立方晶格上的珠子和键组成,这些珠子和键遵循排除体积。线性聚合物的 Flory 临界指数 ν在θ温度下为 1/2,此时排除体积被聚合物段之间产生的吸引力屏蔽。线性聚合物在θ条件下的轨迹被证实可以用高斯链来描述,而在θ温度下,平凡、3(1)-和 5(1)-纽结的 ν值大于线性链。这种 ν 值的增加是由于保持环拓扑结构的约束,因为即使在θ条件下,我们研究的聚合物链也不能相互交叉。对于平凡、3(1)-和 5(1)-纽结环聚合物,扩展参数β在定义下,当 N 依赖性消失时,在 ν = 1/2 的条件下得到。已经发现,β随着拓扑约束程度的增加而减小,其顺序为平凡(0.526)、3(1)(0.422)和 5(1)结(0.354)。由于随机结的参考β值为 0.5,因此在 ν = 1/2 时,平凡环聚合物膨胀,而其他纽结环聚合物则被挤压。

相似文献

2
Chain conformations of ring polymers under theta conditions studied by Monte Carlo simulation.
J Chem Phys. 2013 Nov 14;139(18):184904. doi: 10.1063/1.4829046.
4
Interactions between ring polymers in dilute solution studied by Monte Carlo simulation.
J Chem Phys. 2015 Jan 28;142(4):044904. doi: 10.1063/1.4906556.
5
Topological effect in ring polymers investigated with Monte Carlo simulation.
J Chem Phys. 2008 Jul 21;129(3):034903. doi: 10.1063/1.2954018.
6
Dimensions of catenated ring polymers in dilute solution studied by Monte-Carlo simulation.
J Chem Phys. 2018 Nov 28;149(20):204901. doi: 10.1063/1.5050840.
7
Dimension of ring polymers in bulk studied by Monte-Carlo simulation and self-consistent theory.
J Chem Phys. 2009 Oct 14;131(14):144902. doi: 10.1063/1.3247190.
8
Gyration radius of a circular polymer under a topological constraint with excluded volume.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 1):020801. doi: 10.1103/PhysRevE.64.020801. Epub 2001 Jul 11.
9
Properties of knotted ring polymers. I. Equilibrium dimensions.
J Chem Phys. 2010 Jul 28;133(4):044903. doi: 10.1063/1.3457160.
10
Monte Carlo simulation studies of ring polymers at athermal and theta conditions.
J Chem Phys. 2011 Nov 14;135(18):184906. doi: 10.1063/1.3659501.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验