Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany.
J Phys Chem B. 2013 Feb 7;117(5):1326-36. doi: 10.1021/jp4002719. Epub 2013 Jan 28.
FosA is a manganese-dependent enzyme that utilizes a Mn(2+) ion to catalyze the inactivation of the fosfomycin antibiotic by glutathione (GSH) addition. We report a theoretical study on the catalytic mechanism and the factors governing the regioselectivity and chemoselectivity of FosA. Density functional theory (DFT) calculations on the uncatalyzed reaction give high barriers and almost no regioselectivity even when adding two water molecules to assist the proton transfer. According to quantum mechanics/molecular mechanics (QM/MM) calculations on the full solvated protein, the enzyme-catalyzed glutathione addition reaction involves two major chemical steps that both proceed in the sextet state: proton transfer from the GSH thiol group to the Tyr39 anion and nucleophilic attack by the GSH thiolate leading to epoxide ring-opening. The second step is rate-limiting and is facilitated by the presence of the high-spin Mn(2+) ion that functions as a Lewis acid and stabilizes the leaving oxyanion through direct coordination. The barrier for C1 attack is computed to be 8.9 kcal/mol lower than that for C2 attack, in agreement with the experimentally observed regioselectivity of the enzyme. Further QM/MM calculations on the alternative water attack predict a concerted mechanism for this reaction, where the deprotonation of water, nucleophilic attack, and epoxide ring-opening take place via the same transition state. The calculated barrier is 8.3 kcal/mol higher than that for GSH attack, in line with the observed chemoselectivity of the enzyme, which manages to catalyze the addition of GSH in the presence of water molecules around its active site. The catalytic efficiency, regioselectivity, and chemoselectivity of FosA are rationalized in terms of the influence of the active-site protein environment and the different stabilization of the distorted substrates in the relevant transition states.
FosA 是一种依赖锰的酶,它利用 Mn(2+)离子催化谷胱甘肽 (GSH) 的添加来使 fosfomycin 抗生素失活。我们报告了一项关于 FosA 催化机制和区域选择性、化学选择性控制因素的理论研究。未催化反应的密度泛函理论 (DFT) 计算给出了很高的能垒,即使添加两个水分子来协助质子转移,也几乎没有区域选择性。根据全溶剂化蛋白的量子力学/分子力学 (QM/MM) 计算,酶催化的谷胱甘肽加成反应涉及两个主要的化学步骤,这两个步骤都在 sextet 态中进行:从 GSH 巯基到 Tyr39 阴离子的质子转移和 GSH 硫醇盐的亲核攻击导致环氧化物开环。第二步是限速步骤,高自旋 Mn(2+)离子的存在促进了反应的进行,Mn(2+)离子作为路易斯酸,通过直接配位稳定离去的含氧阴离子。C1 攻击的势垒比 C2 攻击的势垒低 8.9 kcal/mol,这与实验观察到的酶的区域选择性一致。对替代水攻击的进一步 QM/MM 计算预测了该反应的协同机制,其中质子化、亲核攻击和环氧化物开环通过相同的过渡态进行。计算得到的势垒比 GSH 攻击的势垒高 8.3 kcal/mol,与酶观察到的化学选择性一致,酶在其活性位点周围的水分子存在的情况下成功地催化了 GSH 的加成。FosA 的催化效率、区域选择性和化学选择性可以用活性位点蛋白质环境的影响和相关过渡态中扭曲底物的不同稳定化来解释。