Suppr超能文献

用于常染色体显性多囊肾病诊断和风险分层的尿蛋白质组生物标志物:一项多中心研究。

Urinary proteomic biomarkers for diagnosis and risk stratification of autosomal dominant polycystic kidney disease: a multicentric study.

机构信息

Division of Nephrology, University Hospital, Zürich, Switzerland.

出版信息

PLoS One. 2013;8(1):e53016. doi: 10.1371/journal.pone.0053016. Epub 2013 Jan 10.

Abstract

Treatment options for autosomal dominant polycystic kidney disease (ADPKD) will likely become available in the near future, hence reliable diagnostic and prognostic biomarkers for the disease are strongly needed. Here, we aimed to define urinary proteomic patterns in ADPKD patients, which aid diagnosis and risk stratification. By capillary electrophoresis online coupled to mass spectrometry (CE-MS), we compared the urinary peptidome of 41 ADPKD patients to 189 healthy controls and identified 657 peptides with significantly altered excretion, of which 209 could be sequenced using tandem mass spectrometry. A support-vector-machine based diagnostic biomarker model based on the 142 most consistent peptide markers achieved a diagnostic sensitivity of 84.5% and specificity of 94.2% in an independent validation cohort, consisting of 251 ADPKD patients from five different centers and 86 healthy controls. The proteomic alterations in ADPKD included, but were not limited to markers previously associated with acute kidney injury (AKI). The diagnostic biomarker model was highly specific for ADPKD when tested in a cohort consisting of 481 patients with a variety of renal and extrarenal diseases, including AKI. Similar to ultrasound, sensitivity and specificity of the diagnostic score depended on patient age and genotype. We were furthermore able to identify biomarkers for disease severity and progression. A proteomic severity score was developed to predict height adjusted total kidney volume (htTKV) based on proteomic analysis of 134 ADPKD patients and showed a correlation of r = 0.415 (p<0.0001) with htTKV in an independent validation cohort consisting of 158 ADPKD patients. In conclusion, the performance of peptidomic biomarker scores is superior to any other biochemical markers of ADPKD and the proteomic biomarker patterns are a promising tool for prognostic evaluation of ADPKD.

摘要

治疗常染色体显性多囊肾病 (ADPKD) 的方法可能很快就会问世,因此强烈需要可靠的疾病诊断和预后生物标志物。在这里,我们旨在确定 ADPKD 患者的尿液蛋白质组模式,以辅助诊断和风险分层。通过毛细管电泳在线耦合质谱 (CE-MS),我们比较了 41 名 ADPKD 患者和 189 名健康对照者的尿液肽组,鉴定出 657 种排泄明显改变的肽,其中 209 种可通过串联质谱测序。基于基于支持向量机的诊断生物标志物模型,使用来自五个不同中心的 251 名 ADPKD 患者和 86 名健康对照者的独立验证队列中,基于 142 个最一致的肽标志物的诊断模型的诊断灵敏度为 84.5%,特异性为 94.2%。ADPKD 的蛋白质组改变不仅包括先前与急性肾损伤 (AKI) 相关的标志物。在包含 481 名患有各种肾脏和肾脏外疾病(包括 AKI)的患者的队列中测试时,该诊断生物标志物模型对 ADPKD 具有高度特异性。与超声一样,诊断评分的敏感性和特异性取决于患者年龄和基因型。我们还能够确定疾病严重程度和进展的生物标志物。根据 134 名 ADPKD 患者的蛋白质组分析,开发了一种蛋白质组严重程度评分来预测身高调整的总肾体积 (htTKV),并在包含 158 名 ADPKD 患者的独立验证队列中显示与 htTKV 的相关性 r=0.415(p<0.0001)。总之,肽组生物标志物评分的性能优于 ADPKD 的任何其他生化标志物,蛋白质组生物标志物模式是 ADPKD 预后评估的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0947/3542378/c94df278584d/pone.0053016.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验