School of Earth and Environment, University of Western Australia, Perth, Western Australia, Australia.
PLoS One. 2013;8(1):e53303. doi: 10.1371/journal.pone.0053303. Epub 2013 Jan 9.
We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO(2), pH, and aragonite saturation state (Ω(ar)) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO(2), pH, and Ω(ar) are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO(2) relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO(2) in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO(2).
我们使用环流模式 ROMS(区域海洋模式系统)与波浪转换模式 SWAN(近岸波浪模拟)耦合,构建了一个三维水动力-生物地球化学模型,用于模拟波浪驱动的珊瑚礁泻湖系统。模拟结果用于探索水柱状碳酸盐化学在整个珊瑚礁系统中对底栖珊瑚礁代谢、波浪强迫、海平面和系统地貌变化的敏感性。我们的研究结果表明,珊瑚礁水的碳酸盐化学变化主要取决于底栖代谢与向岸波浪能量通量平方根的比值以及礁坪的长度和深度;然而,它们仅与通道几何形状和珊瑚礁系统的总摩擦阻力有微弱的依赖关系。pCO2、pH 和方解石饱和度(Ω(ar))的昼夜变化主要取决于净生产力的变化,而对净钙化的变化相对不敏感;然而,当平均 24 小时时,pCO2、pH 和 Ω(ar)的净变化受净钙化的影响更大。我们还证明,一个相对简单的一维分析模型可以很好地描述珊瑚礁水的碳酸盐化学与底栖代谢、波浪强迫、海平面、礁坪形态和系统总摩擦阻力的功能关系。重要的是,我们的研究结果表明,对于具有狭窄和/或深泻湖的珊瑚礁系统,相对于近海值,珊瑚礁水的 pCO2 长期(数周到数月)净偏移量应该是适度的。因此,许多珊瑚礁环境中水柱 pCO2 的长期演化仍然与近海水域的区域海洋学密切相关,因此直接受到人为驱动的 pCO2 快速增加的影响。