Carmichael S W, Stoddard S L, O'Connor D T, Yaksh T L, Tyce G M
Department of Anatomy, Mayo Clinic/Foundation, Rochester, MN 55905.
Neuroscience. 1990;34(2):433-40. doi: 10.1016/0306-4522(90)90152-t.
Secretion of the adrenal medulla was stimulated in nine cats by insulin-induced hypoglycemia. Levels of catecholamines (mol. wt 153-183), neuropeptide Y (mol. wt 4254) and chromogranin A (mol. wt 48,000) were measured in concurrently collected samples of adrenolumbar venous blood and thoracic duct lymph for up to 4 h following insulin administration. Insulin-induced hypoglycemia elicited an increase in the secretion of catecholamines, which reached peak levels in the adrenolumbar venous plasma at 1.5-2 h and in the lymph at 2.5 h. Although catecholamines were the most numerous measured molecules in the lymph, levels of norepinephrine and epinephrine were 75-250-fold less than those found in the adrenolumbar venous plasma. Neuropeptide Y in the adrenolumbar venous plasma reached peak levels between 1 and 1.5 h; at this time approximately 20% of the peak venous amount was detected in the lymph. Chromogranin A was found in approximately equal amounts in both plasma and lymph; the peak level in the plasma occurred at 1.5-2 h, while that in the lymph was reached at 2-3 h. We suggest that the size of a molecule influences the route it takes following exocytosis from the chromaffin vesicle. Smaller molecules such as catecholamines may pass directly into the circulation, while larger molecules such as chromogranin A may be temporarily sequestered in the interstitial space before passing into the lymph, and hence into the circulation.