Suppr超能文献

在心脏动作电位传播过程中测量跨膜电流。

Quantification of transmembrane currents during action potential propagation in the heart.

机构信息

Division of Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA.

出版信息

Biophys J. 2013 Jan 8;104(1):268-78. doi: 10.1016/j.bpj.2012.11.007.

Abstract

The measurement, quantitative analysis, theory, and mathematical modeling of transmembrane potential and currents have been an integral part of the field of electrophysiology since its inception. Biophysical modeling of action potential propagation begins with detailed ionic current models for a patch of membrane within a distributed cable model. Voltage-clamp techniques have revolutionized clinical electrophysiology via the characterization of the transmembrane current gating variables; however, this kinetic information alone is insufficient to accurately represent propagation. Other factors, including channel density, membrane area, surface/volume ratio, axial conductivities, etc., are also crucial determinants of transmembrane currents in multicellular tissue but are extremely difficult to measure. Here, we provide, to our knowledge, a novel analytical approach to compute transmembrane currents directly from experimental data, which involves high-temporal (200 kHz) recordings of intra- and extracellular potential with glass microelectrodes from the epicardial surface of isolated rabbit hearts during propagation. We show for the first time, to our knowledge, that during stable planar propagation the biphasic total transmembrane current (I(m)) dipole density during depolarization was ∼0.25 ms in duration and asymmetric in amplitude (peak outward current was ∼95 μA/cm(2) and peak inward current was ∼140 μA/cm(2)), and the peak inward ionic current (I(ion)) during depolarization was ∼260 μA/cm(2) with duration of ∼1.0 ms. Simulations of stable propagation using the ionic current versus transmembrane potential relationship fit from the experimental data reproduced these values better than traditional ionic models. During ventricular fibrillation, peak I(m) was decreased by 50% and peak I(ion) was decreased by 70%. Our results provide, to our knowledge, novel quantitative information that complements voltage- and patch-clamp data.

摘要

跨膜电位和电流的测量、定量分析、理论和数学建模自电生理学诞生以来一直是其不可或缺的组成部分。动作电位传播的生物物理建模始于分布式电缆模型中膜片的详细离子电流模型。电压钳技术通过对跨膜电流门控变量的特征化,彻底改变了临床电生理学;然而,这种动力学信息本身不足以准确表示传播。其他因素,包括通道密度、膜面积、表面积/体积比、轴向电导率等,也是多细胞组织中跨膜电流的关键决定因素,但极难测量。在这里,我们提供了一种新颖的分析方法,从实验数据中直接计算跨膜电流,这涉及到使用玻璃微电极从离体兔心的心外膜表面在传播过程中进行高时间(200 kHz)的细胞内和细胞外电位记录。我们首次表明,在稳定的平面传播期间,去极化期间双相总跨膜电流(I(m))偶极子密度持续约 0.25 ms,幅度不对称(峰值外向电流约为 95 μA/cm(2),峰值内向电流约为 140 μA/cm(2)),去极化期间的峰值内向离子电流(I(ion))约为 260 μA/cm(2),持续时间约为 1.0 ms。使用从实验数据拟合的离子电流与跨膜电位关系的稳定传播模拟更好地再现了这些值,优于传统的离子模型。在心室颤动期间,I(m)峰值降低了 50%,I(ion)峰值降低了 70%。我们的结果提供了新颖的定量信息,补充了电压和膜片钳数据。

相似文献

1
Quantification of transmembrane currents during action potential propagation in the heart.
Biophys J. 2013 Jan 8;104(1):268-78. doi: 10.1016/j.bpj.2012.11.007.
2
Transmembrane current imaging in the heart during pacing and fibrillation.
Biophys J. 2013 Oct 1;105(7):1710-9. doi: 10.1016/j.bpj.2013.08.019.
3
Action potentials that mimic fibrillation activate sodium current.
J Mol Cell Cardiol. 1999 Sep;31(9):1673-84. doi: 10.1006/jmcc.1999.1003.
7
Determinants of action potential duration in neonatal rat ventricle cells.
Cardiovasc Res. 1991 Mar;25(3):235-43. doi: 10.1093/cvr/25.3.235.

引用本文的文献

1
Bidomain modeling of electrical and mechanical properties of cardiac tissue.
Biophys Rev (Melville). 2021 Nov 8;2(4):041301. doi: 10.1063/5.0059358. eCollection 2021 Dec.
2
Heart-on-a-chip systems with tissue-specific functionalities for physiological, pathological, and pharmacological studies.
Mater Today Bio. 2023 Dec 20;24:100914. doi: 10.1016/j.mtbio.2023.100914. eCollection 2024 Feb.
3
Effect of Heart Structure on Ventricular Fibrillation in the Rabbit: A Simulation Study.
Front Physiol. 2019 May 15;10:564. doi: 10.3389/fphys.2019.00564. eCollection 2019.
4
New insights on the cardiac safety factor: Unraveling the relationship between conduction velocity and robustness of propagation.
J Mol Cell Cardiol. 2019 Mar;128:117-128. doi: 10.1016/j.yjmcc.2019.01.010. Epub 2019 Jan 22.
5
Organic Bioelectronics: Materials and Biocompatibility.
Int J Mol Sci. 2018 Aug 13;19(8):2382. doi: 10.3390/ijms19082382.
6
Validation and Trustworthiness of Multiscale Models of Cardiac Electrophysiology.
Front Physiol. 2018 Feb 15;9:106. doi: 10.3389/fphys.2018.00106. eCollection 2018.
7
Cardiac action potential repolarization revisited: early repolarization shows all-or-none behaviour.
J Physiol. 2017 Nov 1;595(21):6599-6612. doi: 10.1113/JP273651. Epub 2017 Oct 9.
8
A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup.
PLoS Comput Biol. 2016 Oct 17;12(10):e1005087. doi: 10.1371/journal.pcbi.1005087. eCollection 2016 Oct.
9
Estimability Analysis and Optimal Design in Dynamic Multi-scale Models of Cardiac Electrophysiology.
J Agric Biol Environ Stat. 2016 Jun;21(2):261-276. doi: 10.1007/s13253-016-0244-7. Epub 2016 Jan 21.
10
Filament Dynamics during Simulated Ventricular Fibrillation in a High-Resolution Rabbit Heart.
Biomed Res Int. 2015;2015:720575. doi: 10.1155/2015/720575. Epub 2015 Oct 26.

本文引用的文献

2
Models of cardiac tissue electrophysiology: progress, challenges and open questions.
Prog Biophys Mol Biol. 2011 Jan;104(1-3):22-48. doi: 10.1016/j.pbiomolbio.2010.05.008. Epub 2010 May 27.
3
The electrical constants of a crustacean nerve fibre.
Proc R Soc Lond B Biol Sci. 1946 Dec 3;133(873):444-79. doi: 10.1098/rspb.1946.0024.
4
ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON DURING ACTIVITY.
J Gen Physiol. 1939 May 20;22(5):649-70. doi: 10.1085/jgp.22.5.649.
5
Impulses and Physiological States in Theoretical Models of Nerve Membrane.
Biophys J. 1961 Jul;1(6):445-66. doi: 10.1016/s0006-3495(61)86902-6.
6
Distilling free-form natural laws from experimental data.
Science. 2009 Apr 3;324(5923):81-5. doi: 10.1126/science.1165893.
7
Excito-oscillatory dynamics as a mechanism of ventricular fibrillation.
Heart Rhythm. 2008 Apr;5(4):575-84. doi: 10.1016/j.hrthm.2008.01.011. Epub 2008 Jan 17.
8
Interdependence of virtual electrode polarization and conduction velocity during premature stimulation.
J Electrocardiol. 2006 Oct;39(4 Suppl):S13-8. doi: 10.1016/j.jelectrocard.2006.04.008.
9
Measuring surface potential components necessary for transmembrane current computation using microfabricated arrays.
Am J Physiol Heart Circ Physiol. 2005 Dec;289(6):H2468-77. doi: 10.1152/ajpheart.00570.2005. Epub 2005 Aug 5.
10
Coupled dynamics of voltage and calcium in paced cardiac cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 1):021903. doi: 10.1103/PhysRevE.71.021903. Epub 2005 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验