Suppr超能文献

探索氨基肽酶 N 抑制剂的结构和物理化学要求及虚拟筛选。

Exploration of structural and physicochemical requirements and search of virtual hits for aminopeptidase N inhibitors.

机构信息

Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.

出版信息

Mol Divers. 2013 Feb;17(1):123-37. doi: 10.1007/s11030-013-9422-5. Epub 2013 Jan 23.

Abstract

Aminopeptidase N (APN) inhibitors have been reported to be effective in treating of life threatening diseases including cancer. Validated ligand- and structure-based pharmacophore mapping approaches were combined with Bayesian modeling and recursive partitioning to identify structural and physicochemical requirements for highly active APN inhibitors. Based on the assumption that ligand- and structure-based pharmacophore models are complementary, the efficacy of 'multiple pharmacophore screening' for filtering true positive virtual hits was investigated. These multiple pharmacophore screening methods were utilized to search novel virtual hits for APN inhibition. The number of hits was refined and reduced by recursive partitioning, drug-likeliness, pharmacokinetic property prediction, and comparative molecular-docking studies. Four compounds were proposed as the potential virtual hits for APN enzyme inhibition.

摘要

氨肽酶 N(APN)抑制剂已被报道可有效治疗包括癌症在内的危及生命的疾病。本研究采用配体和基于结构的药效团映射方法与贝叶斯建模和递归分区相结合,以确定高效 APN 抑制剂的结构和物理化学要求。基于配体和基于结构的药效团模型互补的假设,研究了“多药效团筛选”用于过滤真正阳性虚拟命中的效果。这些多药效团筛选方法被用于搜索新型虚拟命中以抑制 APN。通过递归分区、药物似然性、药代动力学性质预测和比较分子对接研究,对命中数量进行了细化和减少。提出了 4 种化合物作为 APN 酶抑制的潜在虚拟命中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ec6/7089330/763492fd3730/11030_2013_9422_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验