Somner E A, Reynolds P E
Department of Biochemistry, University of Cambridge, United Kingdom.
Antimicrob Agents Chemother. 1990 Mar;34(3):413-9. doi: 10.1128/AAC.34.3.413.
Ramoplanin, a new lipoglycopeptide antibiotic, inhibits cell wall peptidoglycan biosynthesis in gram-positive bacteria. In both Staphylococcus aureus and Bacillus megaterium, UDP-N-acetylmuramyl-pentapeptides (UDP-MurNAc-pentapeptides) accumulated at concentrations of ramoplanin close to the MIC, indicating that inhibition of peptidoglycan biosynthesis occurred after formation of cytoplasmic precursors. Susceptible bacteria bound or accumulated approximately 5 x 10(4) molecules of ramoplanin per cell, only 1/100th of the amount of vancomycin which binds to groups within peptidoglycan conforming to the pattern L-alpha alpha (amino acid)-D-alpha alpha-D-alpha alpha, suggesting that ramoplanin has a different target site. This was confirmed by in vitro studies involving a wall-membrane particulate fraction from Gaffkya homari in which peptidoglycan synthesis from UDP-MurNAc-tetrapeptide was inhibited by ramoplanin but not by vancomycin. The incorporation of peptidoglycan precursors into nascent peptidoglycan of a toluenized cell preparation of B. megaterium was inhibited by ramoplanin, indicating that the antibiotic acts at a step before transpeptidation. In vitro studies of a wall-membrane particulate fraction of B. megaterium indicated that ramoplanin did not prevent the formation of lipid intermediate I (undecaprenyl-P-P-MurNAc-pentapeptide) but inhibited the next reaction in which N-acetylglucosamine is transferred to that lipid intermediate. The high concentrations required to inhibit in vitro peptidoglycan-synthesizing systems probably reflect the high concentrations of target sites present. High concentrations of ramoplanin also damage certain properties of the cell membrane, but low concentrations only affected wall synthesis in intact bacteria without perturbing membrane function. These studies indicate that the primary target of ramoplanin is peptidoglycan biosynthesis and that the probable reaction inhibited is the N-acetylglucosaminyltransferase-catalyzed conversion of lipid intermediate I to lipid intermediate II.
雷莫拉宁是一种新型脂糖肽类抗生素,可抑制革兰氏阳性菌细胞壁肽聚糖的生物合成。在金黄色葡萄球菌和巨大芽孢杆菌中,当雷莫拉宁浓度接近最低抑菌浓度(MIC)时,UDP-N-乙酰胞壁酰五肽(UDP-MurNAc-五肽)会积累,这表明肽聚糖生物合成的抑制发生在细胞质前体形成之后。敏感细菌每个细胞结合或积累约5×10⁴个雷莫拉宁分子,这仅是与符合L-αα(氨基酸)-D-αα-D-αα模式的肽聚糖基团结合的万古霉素量的1/100,这表明雷莫拉宁具有不同的靶位点。这一点通过体外研究得到了证实,该研究使用了来自嗜盐芽孢杆菌的壁膜颗粒部分,其中雷莫拉宁可抑制由UDP-MurNAc-四肽合成肽聚糖,但万古霉素则不能。雷莫拉宁可抑制肽聚糖前体掺入巨大芽孢杆菌甲苯处理细胞制剂的新生肽聚糖中,这表明该抗生素作用于转肽作用之前的步骤。对巨大芽孢杆菌壁膜颗粒部分的体外研究表明,雷莫拉宁不会阻止脂质中间体I(十一异戊二烯-P-P-MurNAc-五肽)的形成,但会抑制下一个反应,即N-乙酰葡糖胺转移到该脂质中间体上。抑制体外肽聚糖合成系统所需的高浓度可能反映了存在的靶位点的高浓度。高浓度的雷莫拉宁也会损害细胞膜的某些特性,但低浓度仅影响完整细菌中的细胞壁合成,而不会干扰膜功能。这些研究表明,雷莫拉宁的主要靶标是肽聚糖生物合成,并且可能被抑制的反应是N-乙酰葡糖胺基转移酶催化的脂质中间体I向脂质中间体II的转化。