Suppr超能文献

Zn 铁氧体纳米颗粒的热处理效应的综合研究:微观结构和磁性能

An integrated study of thermal treatment effects on the microstructure and magnetic properties of Zn-ferrite nanoparticles.

机构信息

Condensed Matter Physics Laboratory, Institute of Nuclear Sciences 'Vinča', University of Belgrade, PO Box 522, 11001 Belgrade, Serbia.

出版信息

J Phys Condens Matter. 2013 Feb 27;25(8):086001. doi: 10.1088/0953-8984/25/8/086001. Epub 2013 Jan 23.

Abstract

The evolution of the magnetic state, crystal structure and microstructure parameters of nanocrystalline zinc-ferrite, tuned by thermal annealing of ∼4 nm nanoparticles, was systematically studied by complementary characterization methods. Structural analysis of neutron and synchrotron x-ray radiation data revealed a mixed cation distribution in the nanoparticle samples, with the degree of inversion systematically decreasing from 0.25 in an as-prepared nanocrystalline sample to a non-inverted spinel structure with a normal cation distribution in the bulk counterpart. The results of DC magnetization and Mössbauer spectroscopy experiments indicated a superparamagnetic relaxation in ∼4 nm nanoparticles, albeit with different freezing temperatures T(f) of 27.5 K and 46 K, respectively. The quadrupole splitting parameter decreases with the annealing temperature due to cation redistribution between the tetrahedral and octahedral sites of the spinel structure and the associated defects. DC magnetization measurements indicated the existence of significant interparticle interactions among nanoparticles ('superspins'). Additional confirmation for the presence of interparticle interactions was found from the fit of the T(f)(H) dependence to the AT line, from which a value of the anisotropy constant of K(eff) = 5.6 × 10(5) erg cm(-3) was deduced. Further evidence for strong interparticle interactions was found from AC susceptibility measurements, where the frequency dependence of the freezing temperature T(f)(f) was satisfactory described by both Vogel-Fulcher and dynamic scaling theory, both applicable for interacting systems. The parameters obtained from these fits suggest collective freezing of magnetic moments at T(f).

摘要

通过互补的表征方法,系统研究了经热退火处理的约 4nm 纳米颗粒,对纳米晶锌铁氧体的磁态、晶体结构和微结构参数的演变。中子和同步加速器 X 射线辐射数据的结构分析揭示了纳米颗粒样品中存在混合阳离子分布,其中反演程度从初始制备的纳米晶样品中的 0.25 逐渐降低到体相中的非反演尖晶石结构和正常阳离子分布。直流磁化和穆斯堡尔光谱实验的结果表明,约 4nm 纳米颗粒中存在超顺磁弛豫,尽管它们的冻结温度 T(f)分别为 27.5 K 和 46 K。由于尖晶石结构中的四面体和八面体位置之间的阳离子重新分布以及相关缺陷,四极分裂参数随退火温度降低。直流磁化测量表明纳米颗粒之间存在显著的颗粒间相互作用(“超自旋”)。从 T(f)(H)依赖关系拟合到 AT 线,发现有效各向异性常数 K(eff) = 5.6×10(5)erg cm(-3),从而进一步证实了颗粒间相互作用的存在。从交流磁化率测量中也发现了强颗粒间相互作用的证据,其中冻结温度 T(f)(f)的频率依赖性可以通过 Vogel-Fulcher 和动态标度理论得到令人满意的描述,这两种理论都适用于相互作用的系统。这些拟合得到的参数表明在 T(f)处磁矩的集体冻结。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验