Department of Chemistry, Katholieke Universiteit Leuven, Belgium.
Chemphyschem. 2013 Feb 4;14(2):346-63. doi: 10.1002/cphc.201200878. Epub 2013 Jan 23.
Extensive optimisation calculations are performed for the B(80) isomers in order to find out which principles underlie the formation of large hollow boron cages. Our analysis shows that the most stable isomers contain triangular B(10) or rhombohedral B(16) building blocks. The lowest-energy isomer has C(3v) symmetry and is characterised by a belt of three interconnected B(16) units and two separate B(10) units. At the B3LYP/6-31G(d) level of theory, this newly discovered isomer is 2.29, 1.48, and 0.54 eV below the leapfrog B(80) of Szwacki et al., the T(h) -B(80) of Wang, and the D(3d) -B(80) of Pochet et al., respectively. Our C(3v) isomer is therefore identified as the most stable hollow cage isomer of B(80) presently known. Its HOMO-LUMO gap of 1.6 eV approaches that of the leapfrog B(80). The leapfrog principle still remains a reliable scheme for producing boron cages with larger HOMO-LUMO gaps, whereas the thermodynamically most stable B(80) cages are formed when all pentagonal faces are capped. We show that large hollow cages of boron retain a preference for fullerene frames. The additional capping is in accordance with the following rules: preference for capping of pentagonal faces, formation of B(10) and/or B(16) units, homogeneous distribution of the hexagonal caps, and hole density approaching 1/9. Although our most stable B(80) isomer still remains higher in energy than the B(80) core-shell structure, we show that by applying the bonding principles to larger structures it is possible to construct boron cages with higher stabilisation energy per boron atom than the core-shell structure; a prototypical example is B(160). This clearly shows the continuous competition between the two suggested construction schemes, namely, the formation of multiple-shell structures and hollow cages.
为了找出形成大的中空硼笼的基础原理,我们对 B(80) 异构体进行了广泛的优化计算。我们的分析表明,最稳定的异构体包含三角形的 B(10) 或菱面体的 B(16) 构建块。能量最低的异构体具有 C(3v) 对称性,其特征是由三个相互连接的 B(16)单元和两个单独的 B(10)单元组成的一条带。在 B3LYP/6-31G(d)理论水平上,这个新发现的异构体分别比 Szwacki 等人的跃变 B(80)、Wang 的 T(h)-B(80)和 Pochet 等人的 D(3d)-B(80)低 2.29、1.48 和 0.54 eV。因此,我们的 C(3v)异构体被确定为目前已知的最稳定的中空硼笼异构体。其 HOMO-LUMO 能隙为 1.6 eV,接近跃变 B(80)的 HOMO-LUMO 能隙。跃变原理仍然是产生具有更大 HOMO-LUMO 能隙的硼笼的可靠方案,而当所有的五边形面都被封闭时,热力学上最稳定的 B(80)笼就会形成。我们表明,保留了富勒烯框架的大中空硼笼仍然优先。额外的封闭遵循以下规则:优先封闭五边形面,形成 B(10)和/或 B(16)单元,六元环帽的均匀分布,以及接近 1/9 的孔密度。尽管我们最稳定的 B(80)异构体的能量仍然高于 B(80)核壳结构,但我们表明,通过将成键原理应用于更大的结构,可以构建出每个硼原子的稳定化能高于核壳结构的硼笼;一个典型的例子是 B(160)。这清楚地表明了两种建议的构建方案之间的持续竞争,即多壳层结构和中空笼的形成。