Suppr超能文献

从单个个体开始的突变体的存活几率。

Survival chances of mutants starting with one individual.

作者信息

Kuhn Christoph

机构信息

Institut für Molekularbiologie und Biophysik, Gruppe Biophysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland.

出版信息

J Biol Phys. 2005 Dec;31(3-4):587-97. doi: 10.1007/s10867-005-6061-9.

Abstract

UNLABELLED

A simple theoretical model of a Darwinian system (a periodic system with a multiplication phase and a selection phase) of entities (initial form of polymer strand, primary mutant and satellite mutants) is given.

FIRST CASE

one mutant is considered. One individual of the mutant appears in the multiplication phase of the first generation. The probabilities to find N mutants W(n) (M)(N) after the multiplication phase M of the n-th generation (with probability δ of an error in the replication, where all possible errors are fatal errors) and W(n) (S)(N) after the following selection phase S (with probability β that one individual survives) are given iteratively. The evolutionary tree is evaluated. Averages from the distributions and the probability of extinction W(∞) (S)(0) are obtained.Second case: two mutants are considered (primary mutant and new form). One individual of the primary mutant appears in the multiplication phase of the first generation. The probabilities to find N(p) primary mutants and N(m) of the new form W(n) (M)(N(p), N(m)) after the multiplication phase M of the n-th generation (probability ε of an error in the replication of the primary mutant giving the new form) and W(n) (S)(N(p), N(m)) after the following selection phase S (probabilities β(p) and β(m) that one individual each of the primary mutant and of the new form survives) are given iteratively. Again the evolutionary tree is evaluated. Averages from the distributions are obtained.

摘要

未标注

给出了一个关于实体(聚合物链的初始形式、初级突变体和卫星突变体)的达尔文系统(具有增殖阶段和选择阶段的周期性系统)的简单理论模型。

第一种情况

考虑一个突变体。在第一代的增殖阶段出现一个突变体个体。给出了在第(n)代的增殖阶段(M)之后找到(N)个突变体(W(n)(M)(N))的概率(复制中错误概率为(\delta),所有可能的错误都是致命错误)以及在随后的选择阶段(S)之后找到(N)个突变体(W(n)(S)(N))的概率(一个个体存活的概率为(\beta)),通过迭代计算得出。评估进化树。得到分布的平均值和灭绝概率(W(\infty)(S)(0))。

第二种情况

考虑两个突变体(初级突变体和新形式)。在第一代的增殖阶段出现一个初级突变体个体。给出了在第(n)代的增殖阶段(M)之后找到(N(p))个初级突变体和(N(m))个新形式的概率(W(n)(M)(N(p), N(m)))(初级突变体复制产生新形式时错误概率为(\varepsilon))以及在随后的选择阶段(S)之后找到(N(p))个初级突变体和(N(m))个新形式的概率(W(n)(S)(N(p), N(m)))(初级突变体和新形式各自一个个体存活的概率分别为(\beta(p))和(\beta(m))),通过迭代计算得出。再次评估进化树。得到分布的平均值。

相似文献

3
Fixation probabilities for advantageous mutants: a note on multiplication and sampling.
Math Biosci. 1989 Jul;95(1):37-51. doi: 10.1016/0025-5564(89)90050-3.

本文引用的文献

1
Diversified world: drive to life's origin?!多元化的世界:驶向生命起源?!
Angew Chem Int Ed Engl. 2003 Jan 20;42(3):262-6. doi: 10.1002/anie.200390098.
2
Computer-modeling origin of a simple genetic apparatus.简单遗传装置的计算机建模起源
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8620-5. doi: 10.1073/pnas.141379398.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验