文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于 TNF-α siRNA 口服递送至巨噬细胞的多功能聚合物纳米粒。

Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages.

机构信息

State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China.

出版信息

Biomaterials. 2013 Apr;34(11):2843-54. doi: 10.1016/j.biomaterials.2013.01.033. Epub 2013 Jan 21.


DOI:10.1016/j.biomaterials.2013.01.033
PMID:23347838
Abstract

Oral delivery of therapeutic siRNA is an appealing strategy for the treatment of many diseases, however poses numerous challenges to escort siRNA from the site of administration to the cytoplasm of the target cells. Mannose-modified trimethyl chitosan-cysteine (MTC) conjugate nanoparticles (NPs) were developed via ionic gelation and performed as highly effective polymeric vehicles for oral delivery of TNF-α siRNA. The chitosan backbone as well as trimethyl, thiol, and mannose groups of MTC NPs could be activated at proper time and location to overcome the extracellular and intracellular barriers to oral siRNA delivery, thereby promoting gene silencing efficiency. MTC NPs effectively improved siRNA integrity in physiological environment, enhanced siRNA permeation across the intestinal epithelium, facilitated siRNA uptake by macrophages through clathrin-independent endocytosis, and promoted cytoplasmic siRNA release. At equivalent TNF-α siRNA dose, MTC NPs notably outperformed Lipofectamine2000 in terms of in vitro knockdown of TNF-α production in macrophages. Orally delivered MTC NPs containing low amount of TNF-α siRNA (3.75 nm/kg) inhibited TNF-α production in macrophages in vivo, which protected mice with acute hepatic injury from inflammation-induced liver damage and lethality. This study could provide broad insights into the rational design of oral siRNA vehicles for the treatment of inflammatory diseases.

摘要

口服递送治疗性 siRNA 是治疗许多疾病的一种有吸引力的策略,但它给将 siRNA 从给药部位递送到靶细胞的细胞质带来了诸多挑战。通过离子凝胶化方法开发了甘露糖修饰的三甲基壳聚糖-半胱氨酸(MTC)缀合物纳米颗粒(NPs),并将其用作 TNF-α siRNA 口服递送的高效聚合物载体。MTC NPs 的壳聚糖主链以及三甲基、巯基和甘露糖基团可以在适当的时间和位置被激活,以克服口服 siRNA 递送至细胞内的障碍,从而提高基因沉默效率。MTC NPs 有效地改善了生理环境中 siRNA 的完整性,增强了 siRNA 穿过肠上皮的渗透,通过网格蛋白非依赖性内吞作用促进巨噬细胞摄取 siRNA,并促进细胞质中 siRNA 的释放。在等效的 TNF-α siRNA 剂量下,MTC NPs 在体外巨噬细胞中 TNF-α 产生的敲低方面明显优于 Lipofectamine2000。口服给予含有低剂量 TNF-α siRNA(3.75nm/kg)的 MTC NPs 可抑制体内巨噬细胞中 TNF-α 的产生,从而保护急性肝损伤的小鼠免受炎症引起的肝损伤和致死作用。本研究为设计用于治疗炎症性疾病的口服 siRNA 载体提供了广泛的思路。

相似文献

[1]
Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages.

Biomaterials. 2013-1-21

[2]
Optimization of multifunctional chitosan-siRNA nanoparticles for oral delivery applications, targeting TNF-α silencing in rats.

Acta Biomater. 2015-2-7

[3]
Effects of mannose density on in vitro and in vivo cellular uptake and RNAi efficiency of polymeric nanoparticles.

Biomaterials. 2015-2-27

[4]
siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery.

Acta Biomater. 2020-2

[5]
Galactosylated trimethyl chitosan-cysteine nanoparticles loaded with Map4k4 siRNA for targeting activated macrophages.

Biomaterials. 2013-2-15

[6]
Trimethyl chitosan-cysteine nanoparticles for systemic delivery of TNF-α siRNA via oral and intraperitoneal routes.

Pharm Res. 2013-5-29

[7]
Effects of particle size and binding affinity for small interfering RNA on the cellular processing, intestinal permeation and anti-inflammatory efficacy of polymeric nanoparticles.

J Gene Med. 2015

[8]
Oral delivery of shRNA and siRNA via multifunctional polymeric nanoparticles for synergistic cancer therapy.

Biomaterials. 2014-3-6

[9]
Suppression of Hepatic Inflammation via Systemic siRNA Delivery by Membrane-Disruptive and Endosomolytic Helical Polypeptide Hybrid Nanoparticles.

ACS Nano. 2016-1-26

[10]
RNAi using a chitosan/siRNA nanoparticle system: in vitro and in vivo applications.

Methods Mol Biol. 2009

引用本文的文献

[1]
Application of PPAR Ligands and Nanoparticle Technology in Metabolic Steatohepatitis Treatment.

Biomedicines. 2024-8-16

[2]
Nucleic acid-based nanotherapeutics for treating sepsis and associated organ injuries.

Theranostics. 2024-7-16

[3]
The application of plant-exosome-like nanovesicles as improved drug delivery systems for cancer vaccines.

Discov Oncol. 2024-4-29

[4]
Marine biomaterials in biomedical nano/micro-systems.

J Nanobiotechnology. 2023-11-5

[5]
Chitosan-Based Nanoparticles for Nucleic Acid Delivery: Technological Aspects, Applications, and Future Perspectives.

Pharmaceutics. 2023-6-29

[6]
Oral Delivery of Nucleic Acid Therapies for Local and Systemic Action.

Pharm Res. 2023-1

[7]
Insights on Development Aspects of Polymeric Nanocarriers: The Translation from Bench to Clinic.

Polymers (Basel). 2022-8-29

[8]
ROS-responsive nanoparticles for oral delivery of luteolin and targeted therapy of ulcerative colitis by regulating pathological microenvironment.

Mater Today Bio. 2022-3-23

[9]
Nanotechnology in Drug Delivery for Liver Fibrosis.

Front Mol Biosci. 2022-1-11

[10]
Fate of Tableted Freeze-Dried siRNA Lipoplexes in Gastrointestinal Environment.

Pharmaceutics. 2021-10-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索