Suppr超能文献

超高场功能磁共振成像中用于信号恢复的多层并行传输三维定制射频(PTX 3DTRF)脉冲设计。

Multi-slice parallel transmission three-dimensional tailored RF (PTX 3DTRF) pulse design for signal recovery in ultra high field functional MRI.

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

J Magn Reson. 2013 Mar;228:37-44. doi: 10.1016/j.jmr.2012.12.021. Epub 2013 Jan 11.

Abstract

T(2)(∗) weighted fMRI at high and ultra high field (UHF) is often hampered by susceptibility-induced, through-plane, signal loss. Three-dimensional tailored RF (3DTRF) pulses have been shown to be an effective approach for mitigating through-plane signal loss at UHF. However, the required RF pulse lengths are too long for practical applications. Recently, parallel transmission (PTX) has emerged as a very effective means for shortening the RF pulse duration for 3DTRF without sacrificing the excitation performance. In this article, we demonstrate a RF pulse design strategy for 3DTRF based on the use of multi-slice PTX 3DTRF to simultaneously and precisely recover signal with whole-brain coverage. Phantom and human experiments are used to demonstrate the effectiveness and robustness of the proposed method on three subjects using an eight-channel whole body parallel transmission system.

摘要

T(2)(∗)加权 fMRI 在高场和超高场(UHF)中常受到磁化率诱导的、沿层面的信号丢失的影响。三维定制射频(3DTRF)脉冲已被证明是减轻 UHF 中沿层面信号丢失的有效方法。然而,对于实际应用来说,所需的射频脉冲长度太长。最近,并行传输(PTX)已成为一种非常有效的手段,可以在不牺牲激发性能的情况下缩短 3DTRF 的射频脉冲持续时间。在本文中,我们展示了一种基于使用多层面并行传输 3DTRF 的射频脉冲设计策略,以同时精确地恢复具有全脑覆盖的信号。通过使用八通道全身并行传输系统,在三个对象上的体模和人体实验证明了所提出的方法的有效性和鲁棒性。

相似文献

3
Design of universal parallel-transmit refocusing k -point pulses and application to 3D T -weighted imaging at 7T.
Magn Reson Med. 2018 Jul;80(1):53-65. doi: 10.1002/mrm.27001. Epub 2017 Nov 29.
4
Simultaneous multislice excitation by parallel transmission.
Magn Reson Med. 2014 Apr;71(4):1416-27. doi: 10.1002/mrm.24791. Epub 2013 May 28.
5
Phase relaxed localized excitation pulses for inner volume fast spin echo imaging.
Magn Reson Med. 2016 Sep;76(3):848-61. doi: 10.1002/mrm.25996. Epub 2015 Oct 9.
6
Direct signal control of the steady-state response of 3D-FSE sequences.
Magn Reson Med. 2015 Mar;73(3):951-63. doi: 10.1002/mrm.25192. Epub 2014 Mar 17.
7
Parallel-transmission-enabled magnetization-prepared rapid gradient-echo T1-weighted imaging of the human brain at 7 T.
Neuroimage. 2012 Sep;62(3):2140-50. doi: 10.1016/j.neuroimage.2012.05.068. Epub 2012 Jun 1.
8
2D-RF-pulse-encoded curved-slice imaging.
MAGMA. 2003 Jul;16(2):86-92. doi: 10.1007/s10334-003-0010-z. Epub 2003 Jul 8.

引用本文的文献

1
Maximising BOLD sensitivity through automated EPI protocol optimisation.
Neuroimage. 2019 Apr 1;189:159-170. doi: 10.1016/j.neuroimage.2018.12.052. Epub 2018 Dec 26.
3
Parallel transmission for ultrahigh-field imaging.
NMR Biomed. 2016 Sep;29(9):1145-61. doi: 10.1002/nbm.3313. Epub 2015 May 19.

本文引用的文献

1
A k-space analysis of small-tip-angle excitation. 1989.
J Magn Reson. 2011 Dec;213(2):544-57. doi: 10.1016/j.jmr.2011.09.023.
2
The signal-to-noise ratio of the nuclear magnetic resonance experiment. 1976.
J Magn Reson. 2011 Dec;213(2):329-43. doi: 10.1016/j.jmr.2011.09.018.
3
Improved large tip angle parallel transmission pulse design through a perturbation analysis of the Bloch equation.
Magn Reson Med. 2011 Sep;66(3):687-96. doi: 10.1002/mrm.22827. Epub 2011 Apr 21.
6
Practical considerations for the design of sparse-spokes pulses.
J Magn Reson. 2010 Apr;203(2):294-304. doi: 10.1016/j.jmr.2010.01.012. Epub 2010 Feb 4.
8
Additive angle method for fast large-tip-angle RF pulse design in parallel excitation.
Magn Reson Med. 2008 Apr;59(4):779-87. doi: 10.1002/mrm.21510.
10
Spatial domain method for the design of RF pulses in multicoil parallel excitation.
Magn Reson Med. 2006 Sep;56(3):620-9. doi: 10.1002/mrm.20978.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验