Suppr超能文献

杂合子线粒体三功能蛋白缺陷小鼠模型中的选择性肝胰岛素抵抗。

Selective hepatic insulin resistance in a murine model heterozygous for a mitochondrial trifunctional protein defect.

机构信息

Harry S Truman Memorial Veterans Medical Center, Columbia, MO, USA.

出版信息

Hepatology. 2013 Jun;57(6):2213-23. doi: 10.1002/hep.26285. Epub 2013 Apr 26.

Abstract

UNLABELLED

Earlier reports suggest a link between mitochondrial dysfunction and development of hepatic insulin resistance. Here we used a murine model heterozygous (HET) for a mitochondrial trifunctional protein (MTP) gene defect to determine if a primary defect in mitochondrial long-chain fatty acid oxidation disrupts hepatic insulin action. Hyperinsulinemic-euglycemic clamps and signaling studies were performed for assessment of whole-body and hepatic insulin resistance/signaling. In addition, hepatic fatty acid oxidation and hepatic insulin action were assessed in vitro using primary hepatocytes isolated from HET and wildtype (WT) mice. In both hepatic mitochondria and isolated primary hepatocytes, heterozygosity of MTP caused an ∼50% reduction in mitochondrial fatty acid oxidation, a significantly impaired glucose disposal during the insulin clamp, and a markedly lower insulin-stimulated suppression of hepatic glucose production. HET mice also exhibited impaired insulin signaling, with increased hepatic phosphorylation of IRS2 (ser731) and reduced Akt phosphorylation (ser473) in both hepatic tissue and isolated primary hepatocytes. Assessment of insulin-stimulated FOXO1/phospho-FOXO1 protein content and PEPCK/G6Pase messenger RNA (mRNA) expression did not reveal differences between HET and WT mice. However, insulin-induced phosphorylation of GSK3β was significantly blunted in HET mice. Hepatic insulin resistance was associated with an increased methylation status of the catalytic subunit of protein phosphatase 2A (PP2A-C), but was not associated with differences in hepatic diacylglycerol content, activated protein kinase C-ϵ (PKC-ϵ), inhibitor κB kinase β (IKK-β), c-Jun N-terminal kinase (JNK), or phospho-JNK protein contents. Surprisingly, hepatic ceramides were significantly lower in the HET mice compared with WT.

CONCLUSION

A primary defect in mitochondrial fatty acid β-oxidation causes hepatic insulin resistance selective to hepatic glycogen metabolism that is associated with elevated methylated PP2A-C, but independent of other mechanisms commonly considered responsible for insulin resistance. (HEPATOLOGY 2013;).

摘要

未加标签

早期的报告表明线粒体功能障碍与肝胰岛素抵抗的发展之间存在联系。在这里,我们使用线粒体三功能蛋白(MTP)基因缺陷杂合子(HET)的鼠模型来确定线粒体长链脂肪酸氧化的主要缺陷是否会破坏肝胰岛素作用。通过高胰岛素-正葡萄糖钳夹和信号研究来评估全身和肝胰岛素抵抗/信号。此外,还使用从 HET 和野生型(WT)小鼠分离的原代肝细胞在体外评估肝脂肪酸氧化和肝胰岛素作用。在肝线粒体和分离的原代肝细胞中,MTP 的杂合性导致线粒体脂肪酸氧化减少约 50%,胰岛素钳夹期间葡萄糖清除明显受损,并且胰岛素刺激的肝葡萄糖产生抑制明显降低。HET 小鼠还表现出胰岛素信号受损,肝组织和分离的原代肝细胞中 IRS2(ser731)的磷酸化和 Akt 磷酸化(ser473)增加。胰岛素刺激的 FOXO1/磷酸化-FOXO1 蛋白含量和 PEPCK/G6Pase 信使 RNA(mRNA)表达评估未显示 HET 和 WT 小鼠之间的差异。然而,HET 小鼠中 GSK3β 的胰岛素诱导磷酸化明显减弱。肝胰岛素抵抗与蛋白磷酸酶 2A(PP2A-C)催化亚基的甲基化状态增加有关,但与肝二酰基甘油含量、激活蛋白激酶 C-ε(PKC-ε)、抑制剂 κB 激酶 β(IKK-β)、c-Jun N-末端激酶(JNK)或磷酸化-JNK 蛋白含量的差异无关。令人惊讶的是,与 WT 相比,HET 小鼠的肝 ceramides 明显降低。

结论

线粒体脂肪酸β氧化的主要缺陷导致肝胰岛素抵抗,仅对肝糖原代谢有选择性,与甲基化的 PP2A-C 升高有关,但与其他通常被认为与胰岛素抵抗有关的机制无关。(《肝脏病学》2013 年)。

相似文献

1
3
Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance.
Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17075-80. doi: 10.1073/pnas.0707060104. Epub 2007 Oct 16.
4
Regulation of mitochondrial trifunctional protein modulates nonalcoholic fatty liver disease in mice.
J Lipid Res. 2018 Jun;59(6):967-973. doi: 10.1194/jlr.M080952. Epub 2018 Mar 26.
6
Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding.
Diabetes. 1997 Nov;46(11):1768-74. doi: 10.2337/diab.46.11.1768.
7
Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease.
J Biol Chem. 2004 Jul 30;279(31):32345-53. doi: 10.1074/jbc.M313478200. Epub 2004 May 27.
8
Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria.
J Biol Chem. 2009 May 29;284(22):14809-18. doi: 10.1074/jbc.M901488200. Epub 2009 Mar 30.
10
Methionine restriction prevents the progression of hepatic steatosis in leptin-deficient obese mice.
Metabolism. 2013 Nov;62(11):1651-61. doi: 10.1016/j.metabol.2013.06.012. Epub 2013 Aug 5.

引用本文的文献

2
GPAT1 Activity and Abundant Palmitic Acid Impair Insulin Suppression of Hepatic Glucose Production in Primary Mouse Hepatocytes.
J Nutr. 2024 Apr;154(4):1109-1118. doi: 10.1016/j.tjnut.2024.02.004. Epub 2024 Feb 13.
4
Association of low muscle strength with metabolic dysfunction-associated fatty liver disease: A nationwide study.
World J Gastroenterol. 2023 Dec 7;29(45):5962-5973. doi: 10.3748/wjg.v29.i45.5962.
5
Labeled breath tests in patients with NASH: Octanoate oxidation relates best to measures of glucose metabolism.
Front Physiol. 2023 Apr 21;14:1172675. doi: 10.3389/fphys.2023.1172675. eCollection 2023.
6
Hepatic Mitochondria-Gut Microbiota Interactions in Metabolism-Associated Fatty Liver Disease.
Metabolites. 2023 Feb 21;13(3):322. doi: 10.3390/metabo13030322.
7
Exenatide improves hepatocyte insulin resistance induced by different regional adipose tissue.
Front Endocrinol (Lausanne). 2022 Sep 29;13:1012904. doi: 10.3389/fendo.2022.1012904. eCollection 2022.
8
Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease.
Int J Mol Sci. 2022 Jun 30;23(13):7280. doi: 10.3390/ijms23137280.
9
Hepatocyte-specific eNOS deletion impairs exercise-induced adaptations in hepatic mitochondrial function and autophagy.
Obesity (Silver Spring). 2022 May;30(5):1066-1078. doi: 10.1002/oby.23414. Epub 2022 Mar 31.
10
Effects of Different Intensity Exercise on Glucose Metabolism and Hepatic IRS/PI3K/AKT Pathway in SD Rats Exposed with TCDD.
Int J Environ Res Public Health. 2021 Dec 13;18(24):13141. doi: 10.3390/ijerph182413141.

本文引用的文献

1
PGC-1α overexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion.
Am J Physiol Gastrointest Liver Physiol. 2012 Oct 15;303(8):G979-92. doi: 10.1152/ajpgi.00169.2012. Epub 2012 Aug 16.
2
Diacylglycerol activation of protein kinase Cε and hepatic insulin resistance.
Cell Metab. 2012 May 2;15(5):574-84. doi: 10.1016/j.cmet.2012.03.005.
3
The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance.
Cell Metab. 2012 May 2;15(5):570-3. doi: 10.1016/j.cmet.2012.03.004.
4
Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism.
PLoS One. 2011;6(11):e27424. doi: 10.1371/journal.pone.0027424. Epub 2011 Nov 7.
5
Ceramides as modulators of cellular and whole-body metabolism.
J Clin Invest. 2011 Nov;121(11):4222-30. doi: 10.1172/JCI57144. Epub 2011 Nov 1.
6
Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease.
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16381-5. doi: 10.1073/pnas.1113359108. Epub 2011 Sep 19.
7
PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans.
J Clin Invest. 2011 Jun;121(6):2504-17. doi: 10.1172/JCI46045. Epub 2011 May 16.
8
Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2.
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5748-52. doi: 10.1073/pnas.1103451108. Epub 2011 Mar 21.
9
Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model.
Am J Physiol Gastrointest Liver Physiol. 2011 May;300(5):G874-83. doi: 10.1152/ajpgi.00510.2010. Epub 2011 Feb 24.
10
Endoplasmic reticulum stress and inflammation in obesity and diabetes.
Circ Res. 2010 Sep 3;107(5):579-91. doi: 10.1161/CIRCRESAHA.110.225698.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验