Harry S Truman Memorial Veterans Medical Center, Columbia, MO, USA.
Hepatology. 2013 Jun;57(6):2213-23. doi: 10.1002/hep.26285. Epub 2013 Apr 26.
Earlier reports suggest a link between mitochondrial dysfunction and development of hepatic insulin resistance. Here we used a murine model heterozygous (HET) for a mitochondrial trifunctional protein (MTP) gene defect to determine if a primary defect in mitochondrial long-chain fatty acid oxidation disrupts hepatic insulin action. Hyperinsulinemic-euglycemic clamps and signaling studies were performed for assessment of whole-body and hepatic insulin resistance/signaling. In addition, hepatic fatty acid oxidation and hepatic insulin action were assessed in vitro using primary hepatocytes isolated from HET and wildtype (WT) mice. In both hepatic mitochondria and isolated primary hepatocytes, heterozygosity of MTP caused an ∼50% reduction in mitochondrial fatty acid oxidation, a significantly impaired glucose disposal during the insulin clamp, and a markedly lower insulin-stimulated suppression of hepatic glucose production. HET mice also exhibited impaired insulin signaling, with increased hepatic phosphorylation of IRS2 (ser731) and reduced Akt phosphorylation (ser473) in both hepatic tissue and isolated primary hepatocytes. Assessment of insulin-stimulated FOXO1/phospho-FOXO1 protein content and PEPCK/G6Pase messenger RNA (mRNA) expression did not reveal differences between HET and WT mice. However, insulin-induced phosphorylation of GSK3β was significantly blunted in HET mice. Hepatic insulin resistance was associated with an increased methylation status of the catalytic subunit of protein phosphatase 2A (PP2A-C), but was not associated with differences in hepatic diacylglycerol content, activated protein kinase C-ϵ (PKC-ϵ), inhibitor κB kinase β (IKK-β), c-Jun N-terminal kinase (JNK), or phospho-JNK protein contents. Surprisingly, hepatic ceramides were significantly lower in the HET mice compared with WT.
A primary defect in mitochondrial fatty acid β-oxidation causes hepatic insulin resistance selective to hepatic glycogen metabolism that is associated with elevated methylated PP2A-C, but independent of other mechanisms commonly considered responsible for insulin resistance. (HEPATOLOGY 2013;).
早期的报告表明线粒体功能障碍与肝胰岛素抵抗的发展之间存在联系。在这里,我们使用线粒体三功能蛋白(MTP)基因缺陷杂合子(HET)的鼠模型来确定线粒体长链脂肪酸氧化的主要缺陷是否会破坏肝胰岛素作用。通过高胰岛素-正葡萄糖钳夹和信号研究来评估全身和肝胰岛素抵抗/信号。此外,还使用从 HET 和野生型(WT)小鼠分离的原代肝细胞在体外评估肝脂肪酸氧化和肝胰岛素作用。在肝线粒体和分离的原代肝细胞中,MTP 的杂合性导致线粒体脂肪酸氧化减少约 50%,胰岛素钳夹期间葡萄糖清除明显受损,并且胰岛素刺激的肝葡萄糖产生抑制明显降低。HET 小鼠还表现出胰岛素信号受损,肝组织和分离的原代肝细胞中 IRS2(ser731)的磷酸化和 Akt 磷酸化(ser473)增加。胰岛素刺激的 FOXO1/磷酸化-FOXO1 蛋白含量和 PEPCK/G6Pase 信使 RNA(mRNA)表达评估未显示 HET 和 WT 小鼠之间的差异。然而,HET 小鼠中 GSK3β 的胰岛素诱导磷酸化明显减弱。肝胰岛素抵抗与蛋白磷酸酶 2A(PP2A-C)催化亚基的甲基化状态增加有关,但与肝二酰基甘油含量、激活蛋白激酶 C-ε(PKC-ε)、抑制剂 κB 激酶 β(IKK-β)、c-Jun N-末端激酶(JNK)或磷酸化-JNK 蛋白含量的差异无关。令人惊讶的是,与 WT 相比,HET 小鼠的肝 ceramides 明显降低。
线粒体脂肪酸β氧化的主要缺陷导致肝胰岛素抵抗,仅对肝糖原代谢有选择性,与甲基化的 PP2A-C 升高有关,但与其他通常被认为与胰岛素抵抗有关的机制无关。(《肝脏病学》2013 年)。